History of geophysics

Last updated

The historical development of geophysics has been motivated by two factors. One of these is the research curiosity of humankind related to planet Earth and its several components, its events and its problems. The second is economical usage of Earth's resources (ore deposits, petroleum, water resources, etc.) and Earth-related hazards such as earthquakes, volcanoes, tsunamis, tides, and floods.

Contents

Classical and observational period

In circa 240 BC, Eratosthenes of Cyrene measured the circumference of Earth using geometry and the angle of the Sun at more than one latitude in Egypt. [1]

There is some information about earthquakes in Aristotle's Meteorology, in Naturalis Historia by Pliny the Elder, and in Strabo's Geographica . Aristotle and Strabo recorded observations on tides.

A natural explanation of volcanoes was first undertaken by the Greek philosopher Empedocles (c. 490-430 B.C.), who considered the world to be divided into four elemental forces: earth, air, fire and water. He maintained that volcanoes were manifestation of elemental fire. Winds and earthquakes would play a key role in explanations of volcanoes. Lucretius claimed Mount Etna was completely hollow and the fires of the underground driven by a fierce wind circulating near sea level. Pliny the Elder noted that the presence of earthquakes preceded an eruption. Athanasius Kircher (1602–1680) witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal.

Instrumental and analytical period

A Galilean thermometer Galileo Thermometer 24 degrees.jpg
A Galilean thermometer

Arguably the first modern experimental treatise was William Gilbert's De Magnete (1600), in which he deduced that compasses point north because the Earth itself is magnetic. In 1687 Isaac Newton published his Principia , which not only laid the foundations for classical mechanics and gravitation but also explained a variety of geophysical phenomena such as tides and the precession of the equinox.

These experimental and mathematical analyses were applied to several areas of geophysics: Earth's shape, density, and gravity field (Pierre Bouguer, Alexis Clairaut and Henry Cavendish), Earth's magnetic field (Alexander von Humboldt, Edmund Halley and Carl Friedrich Gauss), seismology (John Milne and Robert Mallet), and the Earth's age, heat and radioactivity (Arthur Holmes and William Thomson, 1st Baron Kelvin).

There are several descriptions and discussions about a philosophical theory of the water cycle by Marcus Vitruvius, Leonardo da Vinci and Bernard Palissy. Pioneers in hydrology include Pierre Perrault, Edme Mariotte and Edmund Halley in studies of such things as rainfall, runoff, drainage area, velocity, river cross-section measurements and discharge. Advances in the 18th century included Daniel Bernoulli's piezometer and Bernoulli's equation as well as the Pitot tube by Henri Pitot. In the 19th century, groundwater hydrology was furthered by Darcy's law, the Dupuit-Thiem well formula, and the Hagen-Poiseuille equation for flows through pipes. Physical Geography of the Sea, the first textbook of oceanography, was written by Matthew Fontaine Maury in 1855. [2]

The thermoscope, or Galileo thermometer, was constructed by Galileo Galilei in 1607. In 1643, Evangelista Torricelli invented the mercury barometer. Blaise Pascal (in 1648) rediscovered that atmospheric pressure decreases with height, and deduced that there is a vacuum above the atmosphere.

Emergence as a discipline

The first known use of the word geophysics was by Julius Fröbel in 1834 (in German). It was used occasionally in the next few decades, but did not catch on until journals devoted to the subject began to appear, beginning with Beiträge zur Geophysik in 1887. The future Journal of Geophysical Research was founded in 1896 with the title Terrestrial Magnetism. In 1898, a Geophysical Institute was founded at the University of Göttingen, and Emil Wiechert became the world's first Chair of Geophysics. [3] An international framework for geophysics was provided by the founding of the International Union of Geodesy and Geophysics in 1919. [4]

20th century

The 20th century was a revolutionary age for geophysics. As an international scientific effort between 1957 and 1958, the International Geophysical Year or IGY was one of the most important for scientific activity of all disciplines of geophysics: aurora and airglow, cosmic rays, geomagnetism, gravity, ionospheric physics, longitude and latitude determinations (precision mapping), meteorology, oceanography, seismology and solar activity.

Earth's interior and seismology

Rayleigh wave Rayleigh wave.jpg
Rayleigh wave

Determining the physics of Earth's interior was enabled by the development of the first seismographs in the 1880s. Based on the behavior of the waves reflected off the internal layers of the Earth, several theories developed as to what would cause variances in wave speed or loss of certain frequencies. This led to scientists like Inge Lehmann discovering the presence of the Earth's core in 1936. Beno Gutenberg and Harold Jeffreys worked at explaining the difference in Earth's density due to compression and the shear velocity of waves. [5] Since seismology is based on elastic waves, the speed of waves could help determine density and therefore the behavior of the layers within the Earth. [5]

Nomenclature for the behavior of seismic waves was produced based on these findings. P-waves and S-waves were used to describe two types of elastic body waves possible. [6] Love waves and Rayleigh waves were used to describe two types of surface waves possible. [6]

Scientists who have contributed to advances in knowledge about the Earth's interior and seismology include Emil Wiechert, Beno Gutenberg, Andrija Mohorovičić, Harold Jeffreys, Inge Lehmann, Edward Bullard, Charles Francis Richter, Francis Birch, Frank Press, Hiroo Kanamori and Walter Elsasser.

One highly debated topic about Earth's interior is mantle plumes. These are theorized to be rising magma, which is responsible for the hotspots in the world, like Hawaii. Originally the theory was that mantle plumes rose up in a direct path, but now there is evidence that the plumes may deflect by small degrees as they rise. [7] It was also found that the proposed hotspot underneath Yellowstone may not be related to a rising mantle plume. This theory has not been fully researched. [8]

Plate tectonics

In the second half of the 20th century, plate tectonics theory was developed by several contributors including Alfred Wegener, Maurice Ewing, Robert S. Dietz, Harry Hammond Hess, Hugo Benioff, Walter C. Pitman, III, Frederick Vine, Drummond Matthews, Keith Runcorn, Bryan L. Isacks, Edward Bullard, Xavier Le Pichon, Dan McKenzie, W. Jason Morgan and John Tuzo Wilson. Prior to this, people had ideas of continental drift, but no real evidence came until the late 20th century. Alexander von Humboldt observed in the early 19th century the geometry and geology of the shores of continents of the Atlantic Ocean. [9] James Hutton and Charles Lyell brought about the idea of gradual change, uniformitarianism, which helped people cope with the slow drift of the continents. Alfred Wegener spearheaded the original theory of continental drift and spent much of his life devoted to this theory. He proposed "Pangaea", one unified giant continent. [9]

During the development of continental drift theory, there was not much exploration of the oceanic part of the world, only continental. Once people began to pay attention to the ocean, geologists found that the floor was spreading, and in different rates at different spots. [9] There are three different main ways in which plates can move: transform, divergent, and Convergent. [9] As well, there can be Rifts, areas where the land is beginning to spread apart. [10]

Oceanography

Advances in physical oceanography occurred in the 20th century. Sea depth by acoustic measurements was first made in 1914. The German "Meteor" expedition gathered 70,000 ocean depth measurements using an echo sounder, surveying the Mid-Atlantic Ridge between 1925 and 1927. The HMS "Challenger" expedition led by Thomas Gaskell identified the record-setting Challenger Deep in 1951. The Great Global Rift was discovered by Maurice Ewing and Bruce Heezen in 1953, and the mountain range under the Arctic was found in 1954 by the Arctic Institute of the USSR. The theory of seafloor spreading was developed in 1960 by Harry Hammond Hess. The Ocean Drilling Program started in 1966. There has been much emphasis on the application of large scale computers to oceanography to allow numerical predictions of ocean conditions and as a part of overall environmental change prediction.[ citation needed ]

Geomagnetism

Geomagnetic polarity, late Cenozoic Geomagnetic polarity late Cenozoic.svg
Geomagnetic polarity, late Cenozoic

The motion of the conductive molten metal beneath the Earth's crust, or the Earth's dynamo, is responsible for the existence of the magnetic field. The interaction of the magnetic field and solar radiation has an impact on how much radiation reaches the surface of Earth and the integrity of the atmosphere. It has been found that the magnetic poles of the Earth have reversed several times, allowing researchers to get an idea of the surface conditions of the planet at that time. [11] The cause of the magnetic poles being reversed is unknown, and the intervals of change vary and do not show a consistent interval. [12] It is believed that the reversal is correlated to the Earth's mantle, although exactly how is still debated. [13]

Distortions to the Earth's magnetic field cause the phenomenon Aurora Borealis, commonly called the Northern Lights. [14] The magnetic field stores energy given by cosmic particles known as solar wind, which causes the magnetic field lines to expand. [14] When the lines contract, they release this energy, which can be seen as the Northern Lights. [14]

Atmospheric influences

The Earth's climate changes over time due to the planet's atmospheric composition, the sun's luminosity, and the occurrence of catastrophic events. [15] :75

Atmospheric composition affects and is affected by the biological mechanisms active on the Earth's surface. Organisms effect the amount of oxygen vs. carbon dioxide through respiration and photosynthesis. They also affect the levels of nitrogen through fixation, nitrification, and denitrification. [16] The ocean is capable of absorbing carbon dioxide from the atmosphere, but this varies based on the levels of nitrogen and phosphorus present in the water. [17] :57 Humans have also played a role in changing the atmospheric composition of the Earth through industrial byproducts, deforestation, and motor vehicles.

The luminosity of the Sun increases as it progresses through its life cycle and are visible over the course of millions of years. Sunspots can form on the Sun's surface, which can cause greater variability in the emissions that Earth receives. [15] :69

Volcanoes form when two plates meet and one subducts underneath the other. [18] They thus form along most plate boundaries; the Ring of Fire is an example of this. [19] The study of volcanoes along plate boundaries has shown a correlation between eruptions and climate. Alan Robock theorizes that volcanic activity can influence climate and can lead to global cooling for years. [20] The leading idea, based on volcanic eruptions, is that sulfur dioxide released from volcanoes has a major effect on the cooling of the atmosphere following the eruption. [21]

Impacts from large celestial bodies, commonly asteroids, create shock waves that push air and distribute dust into the atmosphere, blocking sunlight. [22] This causes global cooling, which can lead to the death and possible extinction of many species.

Industrial application

Industrial applications of geophysics were developed by demand of petroleum exploration and recovery in the 1920s. Later, petroleum, mining and groundwater geophysics were improved. Earthquake hazard minimization and soil/site investigations for earthquake-prone areas were new applications of geophysical engineering in the 1990s.

Seismology is used in the mining industry to read and build models of events that may have been caused or contributed to by the process of mining. [23] This allows scientists to predict the hazards associated with mining in the area. [23]

Much like mining, seismic waves are used to create models of the Earth's subsurface. Geological features, called traps, that commonly indicate the presence of oil, can be identified from the model and used to determine suitable sites to drill. [24]

Groundwater is highly vulnerable to the pollution produced from industry and waste disposal. In order to preserve the quality of fresh water sources, maps of groundwater depth are created and compared to the locations of pollutant sources. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Seismology</span> Scientific study of earthquakes and propagation of elastic waves through a planet

Seismology is the scientific study of earthquakes and the generation and propagation of elastic waves through the Earth or other planetary bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic microseism, atmospheric, and artificial processes such as explosions and human activities. A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of Earth motion as a function of time, created by a seismograph is called a seismogram. A seismologist is a scientist works in basic or applied seismology.

<span class="mw-page-title-main">Geophysics</span> Physics of the Earth and its vicinity

Geophysics is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the Earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines. The term geophysics classically refers to solid earth applications: Earth's shape; its gravitational, magnetic fields, and electromagnetic fields ; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets.

<span class="mw-page-title-main">Mantle plume</span> Upwelling of abnormally hot rock within Earths mantle

A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots, such as Hawaii or Iceland, and large igneous provinces such as the Deccan and Siberian Traps. Some such volcanic regions lie far from tectonic plate boundaries, while others represent unusually large-volume volcanism near plate boundaries.

<span class="mw-page-title-main">Iceland hotspot</span> Hotspot partly responsible for volcanic activity forming the Iceland Plateau and island

The Iceland hotspot is a hotspot which is partly responsible for the high volcanic activity which has formed the Iceland Plateau and the island of Iceland.

<span class="mw-page-title-main">East African Rift</span> Active continental rift zone in East Africa

The East African Rift (EAR) or East African Rift System (EARS) is an active continental rift zone in East Africa. The EAR began developing around the onset of the Miocene, 22–25 million years ago. It was formerly considered to be part of a larger Great Rift Valley that extended north to Asia Minor.

The Lamont–Doherty Earth Observatory (LDEO) is the scientific research center of the Columbia Climate School, and a unit of The Earth Institute at Columbia University. It focuses on climate and earth sciences and is located on a 189-acre campus in Palisades, New York, 18 miles (29 km) north of Manhattan on the Hudson River.

<span class="mw-page-title-main">Don L. Anderson</span> American geophysicist

Don Lynn Anderson was an American geophysicist who made significant contributions to the understanding of the origin, evolution, structure, and composition of Earth and other planets. An expert in numerous scientific disciplines, Anderson's work combined seismology, solid state physics, geochemistry and petrology to explain how the Earth works. Anderson was best known for his contributions to the understanding of the Earth's deep interior, and more recently, for the plate theory hypothesis that hotspots are the product of plate tectonics rather than narrow plumes emanating from the deep Earth. Anderson was Professor (Emeritus) of Geophysics in the Division of Geological and Planetary Sciences at the California Institute of Technology (Caltech). He received numerous awards from geophysical, geological and astronomical societies. In 1998 he was awarded the Crafoord Prize by the Royal Swedish Academy of Sciences along with Adam Dziewonski. Later that year, Anderson received the National Medal of Science. He held honorary doctorates from Rensselaer Polytechnic Institute and the University of Paris (Sorbonne), and served on numerous university advisory committees, including those at Harvard, Princeton, Yale, University of Chicago, Stanford, University of Paris, Purdue University, and Rice University. Anderson's wide-ranging research resulted in hundreds of published papers in the fields of planetary science, seismology, mineral physics, petrology, geochemistry, tectonics and the philosophy of science.

<span class="mw-page-title-main">Outline of Earth sciences</span> Hierarchical outline list of articles related to Earth sciences

The following outline is provided as an overview of and topical guide to Earth science:

<i>Journal of Geophysical Research</i> Peer-reviewed scientific journal

The Journal of Geophysical Research is a peer-reviewed scientific journal. It is the flagship journal of the American Geophysical Union. It contains original research on the physical, chemical, and biological processes that contribute to the understanding of the Earth, Sun, and Solar System. It has seven sections: A, B, C (Oceans), D (Atmospheres), E (Planets), F, and G (Biogeosciences). All current and back issues are available online for subscribers.

<span class="mw-page-title-main">Geology of Iceland</span>

The geology of Iceland is unique and of particular interest to geologists. Iceland lies on the divergent boundary between the Eurasian plate and the North American plate. It also lies above a hotspot, the Iceland plume. The plume is believed to have caused the formation of Iceland itself, the island first appearing over the ocean surface about 16 to 18 million years ago. The result is an island characterized by repeated volcanism and geothermal phenomena such as geysers.

<span class="mw-page-title-main">East Australia hotspot</span>

The East Australia hotspot is a volcanic province in southeast Australia which includes the Peak Range in central Queensland, the Main Range on the Queensland-New South Wales border, Tweed Volcano in New South Wales, and the Newer Volcanics Province (NVP) in Victoria and South Australia. A number of the volcanoes in the province have erupted since Aboriginal settlement. The most recent eruptions were about 5,600 years ago, and memories of them survive in Aboriginal folklore. These eruptions formed the volcanoes Mount Schank and Mount Gambier in the NVP. There have been no eruptions on the Australian mainland since European settlement.

Gillian Rose Foulger is a British geologist and academic born in 1952 in Ipswich. Foulger plays a major role in coordinating the global debate in the category of Earth Science, on whether or not deep mantle thermal plumes exist and create “hot spot” volcanism.

<span class="mw-page-title-main">Earth science</span> Fields of natural science related to Earth

Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere/cryosphere, atmosphere, and geosphere. Earth science can be considered to be a branch of planetary science but with a much older history.

Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect. As the geological record of past climate changes over millions of years is sparse and poorly resolved, many questions remain unresolved regarding the nature of tectonic-climate interaction, although it is an area of active research by geologists and palaeoclimatologists.

<span class="mw-page-title-main">Outline of geophysics</span> Topics in the physics of the Earth and its vicinity

The following outline is provided as an overview of and topical guide to geophysics:

<span class="mw-page-title-main">Inner core super-rotation</span> Concept in geodynamics

Inner core super-rotation is the eastward rotation of the inner core of Earth relative to its mantle, for a net rotation rate that is usually faster than Earth as a whole. A 1995 model of Earth's dynamo predicted super-rotations of up to 3 degrees per year; the following year, this prediction was supported by observed discrepancies in the time that p-waves take to travel through the inner and outer core.

<span class="mw-page-title-main">Marine geophysics</span>

Marine geophysics is the scientific discipline that employs methods of geophysics to study the world's ocean basins and continental margins, particularly the solid earth beneath the ocean. It shares objectives with marine geology, which uses sedimentological, paleontological, and geochemical methods. Marine geophysical data analyses led to the theories of seafloor spreading and plate tectonics.

<span class="mw-page-title-main">MERMAID</span>

MERMAID is a marine scientific instrument platform, short for Mobile Earthquake Recorder for Marine Areas by Independent Divers.

Frank Donald Stacey is an English-born Australian geophysicist, known for his research on rock magnetism and application of thermodynamics to understanding the Earth's core and mantle.

References

  1. Russo, Lucio (2004). The Forgotten Revolution . Berlin: Springer. p.  67–68. ISBN   9783540200680.
  2. Maury, M. F. (1855). The physical geography of the sea. Harper & Brothers.
  3. Schröder 2010
  4. Good 2000
  5. 1 2 Olson, P. (2015). "8.01 Core dynamics: An introduction and overview". Treatise on Geophysics. Vol. 8 (2nd ed.). pp. 1–25. doi:10.1016/B978-0-444-53802-4.00137-8. ISBN   9780444538031.
  6. 1 2 Endsley, Kevin. "What Is Seismology and What Are Seismic Waves?". www.geo.mtu.edu. Retrieved 2018-04-20.
  7. Agius, Matthew R.; Rychert, Catherine A.; Harmon, Nicholas; Laske, Gabi (2017). "Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings". Earth and Planetary Science Letters. 474: 226–236. Bibcode:2017E&PSL.474..226A. doi: 10.1016/j.epsl.2017.06.033 . ISSN   0012-821X.
  8. Gao, Stephen S.; Liu, Kelly H. (2014). "Mantle transition zone discontinuities beneath the contiguous United States". Journal of Geophysical Research: Solid Earth. 119 (8): 6452–6468. Bibcode:2014JGRB..119.6452G. doi: 10.1002/2014jb011253 . ISSN   2169-9313. S2CID   20104124.
  9. 1 2 3 4 Kearey, Philip; Klepeis, Keith A; Vine, Frederick J. (2009). Global tectonics (3rd ed.). Oxford: Wiley-Blackwell. pp. 5–8. ISBN   978-1405107778.
  10. "Rift Valley: definition and geologic significance". ethiopianrift.igg.cnr.it. Retrieved 2018-04-05.
  11. Kono, M. (2015). "Geomagnetism: An introduction and overview". In Kono, M. (ed.). Geomagnetism. Treatise on Geophysics. Vol. 5 (2nd ed.). Elsevier. pp. 1–31. doi:10.1016/B978-0-444-53802-4.00095-6. ISBN   978-0444538031.
  12. Lutz, Timothy M. (1985). "The magnetic reversal record is not periodic". Nature. 317 (6036): 404–407. Bibcode:1985Natur.317..404L. doi:10.1038/317404a0. ISSN   1476-4687. S2CID   32756319.
  13. Glatzmaier, Gary A.; Coe, Robert S.; Hongre, Lionel; Roberts, Paul H. (1999). "The role of the Earth's mantle in controlling the frequency of geomagnetic reversals". Nature. 401 (6756): 885–890. Bibcode:1999Natur.401..885G. doi:10.1038/44776. ISSN   1476-4687. S2CID   4425966.
  14. 1 2 3 Administrator, NASA (2013-06-07). "THEMIS Satellites Discover What Triggers Eruptions of the Northern Lights". NASA. Retrieved 2018-04-13.
  15. 1 2 Pollack, James B. (1982). "5. Solar, Astronomical, and Atmospheric Effects on Climate". Climate in Earth History: Studies in Geophysics. The National Academies Press. pp. 68–76. doi:10.17226/11798. ISBN   978-0-309-03329-9.
  16. Stein, Lisa Y.; Klotz, Martin G. (February 2016). "The nitrogen cycle" (PDF). Current Biology. 26 (3): R94–R98. Bibcode:2016CBio...26..R94S. doi: 10.1016/j.cub.2015.12.021 . PMID   26859274 . Retrieved 13 April 2018.
  17. Arthur, Michael A. (1982). "4. The Carbon Cycle—Controls on Atmosphere CO2 and Climate in the Geologic Past". Climate in Earth History: Studies in Geophysics. The National Academies Press. pp. 55–67. doi:10.17226/11798. ISBN   978-0-309-03329-9.
  18. Woods Hole Oceanographic Institution (April 7, 2017). "Volcanic arcs form by deep melting of rock mixtures". Science Daily.
  19. Oppenheimer, Clive (2011). Eruptions that shook the world. Cambridge, UK: Cambridge University Press. ISBN   9780521641128. OCLC   699759455.
  20. Robock, Alan; Ammann, Caspar M.; Oman, Luke; Shindell, Drew; Levis, Samuel; Stenchikov, Georgiy (27 May 2009). "Did the Toba volcanic eruption of ~74 ka B.P. produce widespread glaciation?". Journal of Geophysical Research. 114 (D10): D10107. Bibcode:2009JGRD..11410107R. doi: 10.1029/2008JD011652 . S2CID   37420327.
  21. Self, Stephen; Zhao, Jing-Xia; Holasek, Rick E.; Torres, Ronnie C.; King, Alan J. (1993). The atmospheric impact of the 1991 Mount Pinatubo eruption (Report). 19990021520.{{cite report}}: Unknown parameter |agency= ignored (help)
  22. Physics, Institute of. "Meteor and asteroid impacts". www.iop.org. Retrieved 2018-04-13.
  23. 1 2 Bialik, Robert; Majdański, Mariusz; Moskalik, Mateusz (2014-07-14). Achievements, History and Challenges in Geophysics: 60th Anniversary of the Institute of Geophysics, Polish Academy of Sciences. Springer. ISBN   9783319075990.
  24. Dasgupta, Shivaji N.; Aminzadeh, Fred (2013). Geophysics for petroleum engineers. Burlington: Elsevier Science. ISBN   9780080929613.
  25. Hao, Jing; Zhang, Yongxiang; Jia, Yangwen; Wang, Hao; Niu, Cunwen; Gan, Yongde; Gong, Yicheng (2017). "Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: a case study in Chaoyang District of Beijing City". Arabian Journal of Geosciences. 10 (6): 144. Bibcode:2017ArJG...10..144H. doi:10.1007/s12517-017-2885-4. S2CID   132334208.

Further reading