History of field theory

Last updated
Iron filings used to show the magnetic field lines of a bar magnet. Magnet0873.png
Iron filings used to show the magnetic field lines of a bar magnet.

In the history of physics, the concept of fields had its origins in the 18th century in a mathematical formulation of Newton's law of universal gravitation, but it was seen as deficient as it implied action at a distance. In 1852, Michael Faraday treated the magnetic field as a physical object, reasoning about lines of force. James Clerk Maxwell used Faraday's conceptualisation to help formulate his unification of electricity and magnetism in his theory of electromagnetism.

Contents

With Albert Einstein's special relativity and the Michelson–Morley experiment, it became clear that electromagnetic waves could travel in vacuum without the need of a medium or luminiferous aether. Einstein also developed general relativity, in which spacetime was treated as a field and its curvature was the origin of the gravitational interactions, putting an end to action at a distance.

In quantum field theory, fields become the fundamental objects of study, and particles are excitations of these fields.

Inverse square laws

In Isaac Newton's classical gravitation, mass is the source of an attractive gravitational field. Newtonian gravity field (physics).svg
In Isaac Newton's classical gravitation, mass is the source of an attractive gravitational field.

The formal definition of gravitational force was introduced by Newton's law of universal gravitation. The success of Newtonian physics since the publication of Isaac Newton's Principia in 1687 provided a framework with which to investigate the motion and forces associated with electricity and magnetism. Charles-Augustin de Coulomb showed in 1785 that the repulsive force between two electrically charged spheres obeys the same (up to a sign) force law as Newton's law of universal gravitation: the force between two bodies is directed along the line separating the bodies and its magnitude is proportional to the product of their charges (for gravitation, their masses) divided by the square of their distance apart. André-Marie Ampère showed in 1823 that the force between infinitesimal lengths of current-carrying wires similarly obeys an inverse-square law such that the force is directed along the line of separation between the wire elements. [1]

Despite the success of these theories in making accurate numerical predictions of a wide range of phenomena, these laws were generally seen as deficient as natural philosophies of mechanics, since they were all essentially action-at-a-distance mechanisms. In the context of the development of field theory, the fact that a function could be written to give the force per unit mass, charge, or current for each point in space was just a mathematical construct. It was seen as untenable on metaphysical grounds [2] [3] that a force be exerted across empty space, and hence these force laws were assumed to be merely descriptive and not explanatory.

Introduction of fields in electricity and magnetism

Rene Descartes drawing of a magnetic field from 1644. It shows the magnetic field of the Earth (D) attracting several round lodestones (I, K, L, M, N) and illustrates his theory of magnetism. Descartes magnetic field.jpg
René Descartes drawing of a magnetic field from 1644. It shows the magnetic field of the Earth (D) attracting several round lodestones (I, K, L, M, N) and illustrates his theory of magnetism.

Michael Faraday coined the term "magnetic field" in his Researches when postulating, after discovering that all the constituent materials of a human are diamagnetic, that if a human were set in a sufficiently strong magnetic field then they too would align with the field. Faraday did not conceive of this field as a mere mathematical construct for calculating the forces between particles—having only rudimentary mathematical training, he had no use for abstracting reality to make quantitative predictions. [1] Instead he conjectured that there was force filling the space where electromagnetic fields were generated and reasoned qualitatively about these forces with force lines:

"Important to the definition of these lines is that they represent a determinate and unchanging amount of force. Though, therefore, their forms, as they exist between two or more centers or sources of power, may vary greatly, and also the space through which they may be traced, yet the sum of power contained in any one section of a given portion of the lines is exactly equal to the sum of power in any other section of the same lines, however altered in form or however convergent or divergent they may be at the second place." [4]

Faraday's insights into the behavior of magnetic fields would prove invaluable for the development of electromagnetism, in terms of the relations between magnetic and electric fields. In 1865, James Clerk Maxwell compiled all known equations of electromagnetism. Maxwell's equations together led to a wave equation that propagated at the speed of light. Thus explaining electromagnetic radiation in terms of the same electric and magnetic fields. In order to explain this wave phenomena, Maxwell considered a luminiferous aether, a medium tha permeated all space that allowed light to propagate. He wrote

"Another theory of electricity which I prefer denies action at a distance and attributes electric action to tensions and pressures in an all-pervading medium, these stresses being the same in kind with those familiar to engineers, and the medium being identical with that in which light is supposed to be propagated." [5]

Relativity

The Michelson–Morley experiment attempted to prove that electromagnetic radiation were oscillations of a luminiferous aether, however the result was negative, indicating that radiation could travel in vacuum. To explain this phenomenon, Albert Einstein developed his theory of special relativity (1905) which resolved the conflicts between classical mechanics and electromagnetism.

Einstein also developed general relativity in 1915, consistent with special relativity and that could explain gravitation in terms of a field theory of spacetime.

Quantum fields

Fields become the fundamental object of study in quantum field theory. Mathematically, quantum fields are formalized as operator-valued distributions. [6] Although there is no direct method of measuring the fields themselves, the framework asserts that all particles are "excitations" of these fields. For example: whereas Maxwell's theory of classical electromagnetism describes light as a self-propagating wave in the electromagnetic field, in quantum electrodynamics light is the massless gauge boson particle called the photon. Furthermore, the number of particles in an isolated system need not be conserved; an example of a process for which this is the case is bremsstrahlung. More detailed understanding of the framework is obtained by studying the Lagrangian density of a field theory which encodes the information of its allowed particle interactions. [7]

Related Research Articles

<span class="mw-page-title-main">Electromagnetism</span> Fundamental interaction between charged particles

In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, two distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between charged particles in relative motion. These two effects combine to create electromagnetic fields in the vicinity of charged particles, which can accelerate other charged particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force.

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist:

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

In physics, action at a distance is the concept that an object's motion can be affected by another object without being in physical contact with it ; that is, the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.

In physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields.

A classical field theory is a Physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

The deductive-nomological model of scientific explanation, also known as Hempel's model, the Hempel–Oppenheim model, the Popper–Hempel model, or the covering law model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure, one where truth of its premises entails truth of its conclusion, hinged on accurate prediction or postdiction of the phenomenon to be explained.

In physics, aether theories propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models."

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

<span class="mw-page-title-main">Relativistic electromagnetism</span> Physical phenomenon in electromagnetic field theory

Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations.

A line of force in Faraday's extended sense is synonymous with Maxwell's line of induction. According to J.J. Thomson, Faraday usually discusses lines of force as chains of polarized particles in a dielectric, yet sometimes Faraday discusses them as having an existence all their own as in stretching across a vacuum. In addition to lines of force, J.J. Thomson—similar to Maxwell—also calls them tubes of electrostatic inductance, or simply Faraday tubes. From the 20th century perspective, lines of force are energy linkages embedded in a 19th-century unified field theory that led to more mathematically and experimentally sophisticated concepts and theories, including Maxwell's equations, electromagnetic waves, and Einstein's relativity.

<span class="mw-page-title-main">History of electromagnetic theory</span> Aspect of history

The history of electromagnetic theory begins with ancient measures to understand atmospheric electricity, in particular lightning. People then had little understanding of electricity, and were unable to explain the phenomena. Scientific understanding into the nature of electricity grew throughout the eighteenth and nineteenth centuries through the work of researchers such as Coulomb, Ampère, Faraday and Maxwell.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">Branches of physics</span> Overview of the branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

<span class="mw-page-title-main">History of Maxwell's equations</span>

In the beginning of the 19th century, many experimental and theoretical works had been accomplished in the understanding of electromagnetics. In the 1780s, Charles-Augustin de Coulomb established his law of electrostatics. In 1825, André-Marie Ampère published his Ampère's force law. Michael Faraday discovered the electromagnetic induction through his experiments and conceptually, he emphasized the lines of forces in this electromagnetic induction. In 1834, Emil Lenz solved the problem of the direction of the induction, and Franz Ernst Neumann wrote down the equation to calculate the induced force by change of magnetic flux. However, these experimental results and rules were not well organized and sometimes confusing to scientists. A comprehensive summary of the electrodynamic principles was in urgent need at that time.

References

  1. 1 2 Forbes, Nancy (2014). Faraday, Maxwell, and the Electromagnetic Field: How Two Men Revolutionized Physics. Amherst, NY: Prometheus Press. ISBN   978-1616149420.
  2. McMullin, Ernan. "The Origins of the Field Concept in Physics."
  3. Williams, Leslie Pearce (1966). The Origins of Field Theory . New York, NY: Random House.
  4. Faraday, Michael. "Experimental Researches in Electricity.--Twenty-Eighth Series." Philosophical Transactions of the Royal Society of London 142 (1852): 25-56. JSTOR   108532.
  5. Dyson, Freeman. "Why is Maxwell's Theory so hard to understand?" (PDF). Retrieved 6 May 2017.
  6. Wald, Robert M. (2006-08-03). "The History and Present Status of Quantum Field Theory in Curved Spacetime". arXiv: gr-qc/0608018 .
  7. V., Schroeder, Daniel (1995). An introduction to quantum field theory . Addison-Wesley. ISBN   9780201503975. OCLC   20393204.{{cite book}}: CS1 maint: multiple names: authors list (link)