Asymptotically flat spacetime

Last updated

An asymptotically flat spacetime is a Lorentzian manifold in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of Minkowski spacetime.

Contents

While this notion makes sense for any Lorentzian manifold, it is most often applied to a spacetime standing as a solution to the field equations of some metric theory of gravitation, particularly general relativity. In this case, we can say that an asymptotically flat spacetime is one in which the gravitational field, as well as any matter or other fields which may be present, become negligible in magnitude at large distances from some region. In particular, in an asymptotically flat vacuum solution, the gravitational field (curvature) becomes negligible at large distances from the source of the field (typically some isolated massive object such as a star). [1]

Intuitive significance

The condition of asymptotic flatness is analogous to similar conditions in mathematics and in other physical theories. Such conditions say that some physical field or mathematical function is asymptotically vanishing in a suitable sense.[ citation needed ]

In general relativity, an asymptotically flat vacuum solution models the exterior gravitational field of an isolated massive object. Therefore, such a spacetime can be considered as an isolated system: a system in which exterior influences can be neglected. Indeed, physicists rarely imagine a universe containing a single star and nothing else when they construct an asymptotically flat model of a star.[ citation needed ] Rather, they are interested in modeling the interior of the star together with an exterior region in which gravitational effects due to the presence of other objects can be neglected. Since typical distances between astrophysical bodies tend to be much larger than the diameter of each body, we often can get away with this idealization, which usually helps to greatly simplify the construction and analysis of solutions.

Formal definitions

A manifold is asymptotically simple if it admits a conformal compactification such that every null geodesic in has future and past endpoints on the boundary of .

Since the latter excludes black holes, one defines a weakly asymptotically simple manifold as a manifold with an open set isometric to a neighbourhood of the boundary of , where is the conformal compactification of some asymptotically simple manifold.

A manifold is asymptotically flat if it is weakly asymptotically simple and asymptotically empty in the sense that its Ricci tensor vanishes in a neighbourhood of the boundary of .

[2]

Some examples and nonexamples

Only spacetimes which model an isolated object are asymptotically flat. Many other familiar exact solutions, such as the FRW models, are not.

A simple example of an asymptotically flat spacetime is the Schwarzschild metric solution. More generally, the Kerr metric is also asymptotically flat. But another well known generalization of the Schwarzschild vacuum, the Taub–NUT space, is not asymptotically flat. An even simpler generalization, the de Sitter-Schwarzschild metric solution, which models a spherically symmetric massive object immersed in a de Sitter universe, is an example of an asymptotically simple spacetime which is not asymptotically flat.

On the other hand, there are important large families of solutions which are asymptotically flat, such as the AF Weyl metrics and their rotating generalizations, the AF Ernst vacuums (the family of all stationary axisymmetric and asymptotically flat vacuum solutions). These families are given by the solution space of a much simplified family of partial differential equations, and their metric tensors can be written down in terms of an explicit multipole expansion.

A coordinate-dependent definition

The simplest (and historically the first) way of defining an asymptotically flat spacetime assumes that we have a coordinate chart, with coordinates , which far from the origin behaves much like a Cartesian chart on Minkowski spacetime, in the following sense. Write the metric tensor as the sum of a (physically unobservable) Minkowski background plus a perturbation tensor, , and set . Then we require:

One reason why we require the partial derivatives of the perturbation to decay so quickly is that these conditions turn out to imply that the gravitational field energy density (to the extent that this somewhat nebulous notion makes sense in a metric theory of gravitation) decays like , which would be physically sensible. (In classical electromagnetism, the energy of the electromagnetic field of a point charge decays like .)

A coordinate-free definition

Around 1962, Hermann Bondi, Rainer K. Sachs, and others began to study the general phenomenon of radiation from a compact source in general relativity, which requires more flexible definitions of asymptotic flatness. In 1963, Roger Penrose imported from algebraic geometry the essential innovation, now called conformal compactification, and in 1972, Robert Geroch used this to circumvent the tricky problem of suitably defining and evaluating suitable limits in formulating a truly coordinate-free definition of asymptotic flatness. In the new approach, once everything is properly set up, one need only evaluate functions on a locus in order to verify asymptotic flatness.

Applications

The notion of asymptotic flatness is extremely useful as a technical condition in the study of exact solutions in general relativity and allied theories. There are several reasons for this:

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations, although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds. Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.

In physics, the Brans–Dicke theory of gravitation is a competitor to Einstein's general theory of relativity. It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity. The gravitational constant is not presumed to be constant but instead is replaced by a scalar field which can vary from place to place and with time.

In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term.

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static.

In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.

In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein–Maxwell solutions.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

In theoretical physics, particularly fringe physics, polarizable vacuum (PV) and its associated theory refer to proposals by Harold Puthoff, Robert H. Dicke, and others to develop an analog of general relativity to describe gravity and its relationship to electromagnetism.

The Goldberg–Sachs theorem is a result in Einstein's theory of general relativity about vacuum solutions of the Einstein field equations relating the existence of a certain type of congruence with algebraic properties of the Weyl tensor.

In general relativity, the Weyl metrics are a class of static and axisymmetric solutions to Einstein's field equation. Three members in the renowned Kerr–Newman family solutions, namely the Schwarzschild, nonextremal Reissner–Nordström and extremal Reissner–Nordström metrics, can be identified as Weyl-type metrics.

In theoretical physics, null infinity is a region at the boundary of asymptotically flat spacetimes. In general relativity, straight paths in spacetime, called geodesics, may be space-like, time-like, or light-like. The distinction between these paths stems from whether the spacetime interval of the path is positive, negative, or zero. Light-like paths physically correspond to physical phenomena which propagate through space at the speed of light, such as electromagnetic radiation and gravitational radiation. The boundary of a flat spacetime is known as conformal infinity, and can be thought of as the end points of all geodesics as they go off to infinity. The region of null infinity corresponds to the terminus of all null geodesics in a flat Minkowski space. The different regions of conformal infinity are most often visualized on a Penrose diagram, where they make up the boundary of the diagram. There are two distinct regions of null infinity, called past and future null infinity, which can be denoted using a script 'I' as and . These two regions are often referred to as 'scri-plus' and 'scri-minus' respectively. Geometrically, each of these regions actually has the structure of a topologically cylindrical three dimensional region.

References

Notes

  1. "Physics" (PDF).
  2. Townsend, P. K (1997). "Black Holes". arXiv: gr-qc/9707012 .