Chronology protection conjecture

Last updated

The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales - even when the latter theory states that it should be possible (such as in scenarios where faster than light travel is allowed). The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation [1] (also known as chronology violation). [2]

Contents

Etymology

In a 1992 paper, Hawking uses the metaphorical device of a "Chronology Protection Agency" as a personification of the aspects of physics that make time travel impossible at macroscopic scales, thus apparently preventing temporal paradoxes. He says:

It seems that there is a Chronology Protection Agency which prevents the appearance of closed timelike curves and so makes the universe safe for historians. [3]

The idea of the Chronology Protection Agency appears to be drawn playfully from the Time Patrol or Time Police concept, which has been used in many works of science fiction [4] such as Poul Anderson's series of Time Patrol stories or Isaac Asimov's novel The End of Eternity , or in the television series Doctor Who . "The Chronology Protection Case" by Paul Levinson, published after Hawking's paper, posits a universe that goes so far as to murder any scientists who are close to inventing any means of time travel. Larry Niven, in his short story ‘Rotating Cylinders and the possibility of Global Causalty Violation’ expands this concept so that the universe causes environmental catastrophe, or global civil war, or the local sun going nova, to any civilisation which shows any sign of successful construction.

General relativity and quantum corrections

Many attempts to generate scenarios for closed timelike curves have been suggested, and the theory of general relativity does allow them in certain circumstances. Some theoretical solutions in general relativity that contain closed timelike curves would require an infinite universe with certain features that our universe does not appear to have, such as the universal rotation of the Gödel metric or the rotating cylinder of infinite length known as a Tipler cylinder. However, some solutions allow for the creation of closed timelike curves in a bounded region of spacetime, with the Cauchy horizon being the boundary between the region of spacetime where closed timelike curves can exist and the rest of spacetime where they cannot. [5] One of the first such bounded time travel solutions found was constructed from a traversable wormhole, based on the idea of taking one of the two "mouths" of the wormhole on a round-trip journey at relativistic speed to create a time difference between it and the other mouth (see the discussion at Wormhole#Time travel).

General relativity does not include quantum effects on its own, and a full integration of general relativity and quantum mechanics would require a theory of quantum gravity, but there is an approximate method for modeling quantum fields in the curved spacetime of general relativity, known as semiclassical gravity. Initial attempts to apply semiclassical gravity to the traversable wormhole time machine indicated that at exactly the moment that wormhole would first allow for closed timelike curves, quantum vacuum fluctuations build up and drive the energy density to infinity in the region of the wormholes. This occurs when the two wormhole mouths, call them A and B, have been moved in such a way that it becomes possible for a particle or wave moving at the speed of light to enter mouth B at some time T2 and exit through mouth A at an earlier time T1, then travel back towards mouth B through ordinary space, and arrive at mouth B at the same time T2 that it entered B on the previous loop; in this way the same particle or wave can make a potentially infinite number of loops through the same regions of spacetime, piling up on itself. [6] Calculations showed that this effect would not occur for an ordinary beam of radiation, because it would be "defocused" by the wormhole so that most of a beam emerging from mouth A would spread out and miss mouth B. [7] But when the calculation was done for vacuum fluctuations, it was found that they would spontaneously refocus on the trip between the mouths, indicating that the pileup effect might become large enough to destroy the wormhole in this case. [8]

Uncertainty about this conclusion remained, because the semiclassical calculations indicated that the pileup would only drive the energy density to infinity for an infinitesimal moment of time, after which the energy density would die down. [9] But semiclassical gravity is considered unreliable for large energy densities or short time periods that reach the Planck scale; at these scales, a complete theory of quantum gravity is needed for accurate predictions. So, it remains uncertain whether quantum-gravitational effects might prevent the energy density from growing large enough to destroy the wormhole. [10] Stephen Hawking conjectured that not only would the pileup of vacuum fluctuations still succeed in destroying the wormhole in quantum gravity, but also that the laws of physics would ultimately prevent any type of time machine from forming; this is the chronology protection conjecture. [11]

Subsequent works in semiclassical gravity provided examples of spacetimes with closed timelike curves where the energy density due to vacuum fluctuations does not approach infinity in the region of spacetime outside the Cauchy horizon. [11] However, in 1997 a general proof was found demonstrating that according to semiclassical gravity, the energy of the quantum field (more precisely, the expectation value of the quantum stress-energy tensor) must always be either infinite or undefined on the horizon itself. [12] Both cases indicate that semiclassical methods become unreliable at the horizon and quantum gravity effects would be important there, consistent with the possibility that such effects would always intervene to prevent time machines from forming. [11]

A definite theoretical decision on the status of the chronology protection conjecture would require a full theory of quantum gravity [13] as opposed to semiclassical methods. There are also some arguments from string theory that seem to support chronology protection, [14] [15] [16] [17] [18] but string theory is not yet a complete theory of quantum gravity. Experimental observation of closed timelike curves would of course demonstrate this conjecture to be false, but short of that, if physicists had a theory of quantum gravity whose predictions had been well-confirmed in other areas, this would give them a significant degree of confidence in the theory's predictions about the possibility or impossibility of time travel.

Other proposals that allow for backwards time travel but prevent time paradoxes, such as the Novikov self-consistency principle, which would ensure the timeline stays consistent, or the idea that a time traveler is taken to a parallel universe while their original timeline remains intact, do not qualify as "chronology protection".

See also

Notes

  1. Monroe, Hunter (2008-10-29). "Are Causality Violations Undesirable?". Foundations of Physics. 38 (11): 1065–1069. arXiv: gr-qc/0609054 . Bibcode:2008FoPh...38.1065M. doi:10.1007/s10701-008-9254-9. S2CID   119707350.
  2. Visser, Matt (1997). "Traversable wormholes: the Roman ring". Physical Review D. 55 (8): 5212–5214. arXiv: gr-qc/9702043 . Bibcode:1997PhRvD..55.5212V. doi:10.1103/PhysRevD.55.5212. S2CID   2869291.
  3. Hawking, S. W. (1992). "Chronology protection conjecture". Phys. Rev. D. 46 (2): 603–611. Bibcode:1992PhRvD..46..603H. doi:10.1103/physrevd.46.603. PMID   10014972.
  4. "Time Police : SFE : Science Fiction Encyclopedia". Sf-encyclopedia.com. December 21, 2011. Retrieved 2014-08-25.
  5. Gott, J. Richard (2001). Time Travel in Einstein's Universe: The Physical Possibilities of Travel Through Time. Houghton Mifflin. p.  117. ISBN   978-0-395-95563-5.
  6. Thorne, Kip S. (1994). Black Holes and Time Warps. W. W. Norton. pp. 505–506. ISBN   978-0-393-31276-8.
  7. Thorne 1994, p. 507
  8. Thorne 1994, p. 517
  9. Everett, Allen; Roman, Thomas (2012). Time Travel and Warp Drives. University of Chicago Press. p.  190. ISBN   978-0-226-22498-5.
  10. Everett and Roman 2012, p. 190
  11. 1 2 3 Everett and Roman 2012, p. 191
  12. Kay, Bernard; Radzikowski, Marek; Wald, Robert (1997). "Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon". Communications in Mathematical Physics. 183 (3): 533–556. arXiv: gr-qc/9603012v2 . Bibcode:1997CMaPh.183..533K. CiteSeerX   10.1.1.339.6036 . doi:10.1007/s002200050042. S2CID   5562578.
  13. Thorne 1994, p. 521
  14. Semeniuk, Ivan (20 September 2003). "No going back". New Scientist . Retrieved 10 January 2013.
  15. Herdeiro, C.A.R. (2000). "Special properties of five-dimensional BPS rotating black holes". Nuclear Physics B. 582 (1–3): 363–392. arXiv: hep-th/0003063 . Bibcode:2000NuPhB.582..363H. doi:10.1016/S0550-3213(00)00335-7.
  16. Caldarelli, Marco; Klemm, Dietmar; Silva, Pedro (2005). "Chronology protection in anti-de Sitter". Classical and Quantum Gravity. 22 (17): 3461–3466. arXiv: hep-th/0411203 . Bibcode:2005CQGra..22.3461C. doi:10.1088/0264-9381/22/17/007. S2CID   45831930.
  17. Caldarelli, Marco; Klemm, Dietmar; Sabra, Wafic (2001). "Causality violation and naked time machines in AdS5". Journal of High Energy Physics. 2001 (5): 014. arXiv: hep-th/0103133 . Bibcode:2001JHEP...05..014C. doi:10.1088/1126-6708/2001/05/014. S2CID   14279740.
  18. Raeymaekers, Joris; Van den Bleeken, Dieter; Vercnocke, Bert (2010). "Relating chronology protection and unitarity through holography". Journal of High Energy Physics. 2010 (4): 21. arXiv: 0911.3893 . Bibcode:2010JHEP...04..021R. doi:10.1007/JHEP04(2010)021. S2CID   118595727.

Related Research Articles

Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalises special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Time travel</span> Hypothetical travel into the past or future

Time travel is the hypothetical activity of traveling into the past or future. Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a hypothetical device known as a time machine. The idea of a time machine was popularized by H. G. Wells's 1895 novel The Time Machine.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

<span class="mw-page-title-main">Alcubierre drive</span> Hypothetical FTL transportation by warping space

The Alcubierre drive is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum could be created. Proposed by theoretical physicist Miguel Alcubierre in 1994, the Alcubierre drive is based on a solution of Einstein's field equations. Since those solutions are metric tensors, the Alcubierre drive is also referred to as Alcubierre metric.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

<span class="mw-page-title-main">Kip Thorne</span> American physicist (born 1940)

Kip Stephen Thorne is an American theoretical physicist known for his contributions in gravitational physics and astrophysics. Along with Rainer Weiss and Barry C. Barish, he was awarded the 2017 Nobel Prize in Physics for his contributions to the LIGO detector and the observation of gravitational waves.

In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949, who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity which would replace GR, an idea which Stephen Hawking labeled the chronology protection conjecture. Others note that if every closed timelike curve in a given spacetime passes through an event horizon, a property which can be called chronological censorship, then that spacetime with event horizons excised would still be causally well behaved and an observer might not be able to detect the causal violation.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

A Tipler cylinder, also called a Tipler time machine, is a hypothetical object theorized to be a potential mode of time travel—although results have shown that a Tipler cylinder could only allow time travel if its length were infinite or with the existence of negative energy.

Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.

<span class="mw-page-title-main">Black hole information paradox</span> Mystery of disappearance of information in a black hole

The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation. He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.

A temporal paradox, time paradox, or time travel paradox, is a paradox, an apparent contradiction, or logical contradiction associated with the idea of time travel or other foreknowledge of the future. While the notion of time travel to the future complies with the current understanding of physics via relativistic time dilation, temporal paradoxes arise from circumstances involving hypothetical time travel to the past – and are often used to demonstrate its impossibility.

In general relativity, a Roman ring is a configuration of wormholes where no subset of wormholes is near to chronology violation, though the combined system can be arbitrarily close to chronology violation.

<span class="mw-page-title-main">Quantum field theory in curved spacetime</span> Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

A Krasnikov tube is a speculative mechanism for space travel involving the warping of spacetime into permanent superluminal tunnels. The resulting structure is analogous to a wormhole or an immobile Alcubierre drive with the endpoints displaced in time as well as space. The idea was proposed by Sergey Krasnikov in 1995.

<span class="mw-page-title-main">Quantum cosmology</span> Attempts to develop a quantum mechanical theory of cosmology

Quantum cosmology is the attempt in theoretical physics to develop a quantum theory of the universe. This approach attempts to answer open questions of classical physical cosmology, particularly those related to the first phases of the universe.

<span class="mw-page-title-main">Ronald Mallett</span> American theoretical physicist

Ronald Lawrence Mallett is an American theoretical physicist, academic and author. He has been a faculty member of the University of Connecticut since 1975 and is best known for his position on the possibility of time travel.

Misner space is an abstract mathematical spacetime, first described by Charles W. Misner. It is also known as the Lorentzian orbifold . It is a simplified, two-dimensional version of the Taub–NUT spacetime. It contains a non-curvature singularity and is an important counterexample to various hypotheses in general relativity.

References