Author | Stephen Hawking |
---|---|
Language | English |
Subject | Mathematics |
Publisher | Running Press |
Publication date | 2005 (first edition) 2007 (second edition) |
Media type | |
Pages | 1176 |
ISBN | 9780762419227 (first edition) 9780762430048 (second edition) |
Preceded by | A Briefer History of Time |
Followed by | The Grand Design |
God Created the Integers: The Mathematical Breakthroughs That Changed History is a 2005 anthology, edited by Stephen Hawking, of "excerpts from thirty-one of the most important works in the history of mathematics." [1]
The title of the book is a reference to a quotation attributed to mathematician Leopold Kronecker, who once wrote that "God made the integers; all else is the work of man." [2]
The works are grouped by author and ordered chronologically. Each section is prefaced by notes on the mathematician's life and work. The anthology includes works by the following mathematicians:
Selections from the works of Euler, Bolyai, Lobachevsky and Galois, which are included in the second edition of the book (published in 2007), were not included in the first edition.
Évariste Galois was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a problem that had been open for 350 years. His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra.
Leonhard Euler was a Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy, and music theory.
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers, or defined as generalizations of the integers.
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry.
Joseph-Louis Lagrange, also reported as Giuseppe Luigi Lagrange or Lagrangia, was an Italian mathematician, physicist and astronomer, later naturalized French. He made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics.
János Bolyai or Johann Bolyai, was a Hungarian mathematician who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consistent alternative geometry that might correspond to the structure of the universe helped to free mathematicians to study abstract concepts irrespective of any possible connection with the physical world.
La Géométrie was published in 1637 as an appendix to Discours de la méthode, written by René Descartes. In the Discourse, Descartes presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method.
Eric Temple Bell was a Scottish-born mathematician and science fiction writer who lived in the United States for most of his life. He published non-fiction using his given name and fiction as John Taine.
Eugenio Beltrami was an Italian mathematician notable for his work concerning differential geometry and mathematical physics. His work was noted especially for clarity of exposition. He was the first to prove consistency of non-Euclidean geometry by modeling it on a surface of constant curvature, the pseudosphere, and in the interior of an n-dimensional unit sphere, the so-called Beltrami–Klein model. He also developed singular value decomposition for matrices, which has been subsequently rediscovered several times. Beltrami's use of differential calculus for problems of mathematical physics indirectly influenced development of tensor calculus by Gregorio Ricci-Curbastro and Tullio Levi-Civita.
Nikolai Ivanovich Lobachevsky was a Russian mathematician and geometer, known primarily for his work on hyperbolic geometry, otherwise known as Lobachevskian geometry, and also for his fundamental study on Dirichlet integrals, known as the Lobachevsky integral formula.
In mathematics, an Euler system is a collection of compatible elements of Galois cohomology groups indexed by fields. They were introduced by Kolyvagin in his work on Heegner points on modular elliptic curves, which was motivated by his earlier paper Kolyvagin (1988) and the work of Thaine (1988). Euler systems are named after Leonhard Euler because the factors relating different elements of an Euler system resemble the Euler factors of an Euler product.
Men of Mathematics: The Lives and Achievements of the Great Mathematicians from Zeno to Poincaré is a book on the history of mathematics published in 1937 by Scottish-born American mathematician and science fiction writer E. T. Bell (1883–1960). After a brief chapter on three ancient mathematicians, it covers the lives of about forty mathematicians who flourished in the seventeenth through nineteenth centuries. The book is illustrated by mathematical discussions, with emphasis on mainstream mathematics.
Paul Gustav Samuel Stäckel was a German mathematician, active in the areas of differential geometry, number theory, and non-Euclidean geometry. In the area of prime number theory, he used the term twin prime for the first time.
In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.
Stephen William Hawking, was an English theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at Cambridge, widely viewed as one of the most prestigious academic posts in the world.
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous knowledge by almost all living mathematicians at the time.
Julius Wilhelm Richard Dedekind was a German mathematician who made important contributions to number theory, abstract algebra, and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as logicism.
Harold Mortimer Edwards, Jr. was an American mathematician working in number theory, algebra, and the history and philosophy of mathematics.
Significant Figures: The Lives and Work of Great Mathematicians is a 2017 nonfiction book by British mathematician Ian Stewart, published by Basic Books. In the work, Stewart discusses the lives and contributions of 25 figures who are prominent in the history of mathematics. The 25 mathematicians selected are: Archimedes, Liu Hui, Muḥammad ibn Mūsā al-Khwārizmī, Madhava of Sangamagrama, Gerolamo Cardano, Pierre de Fermat, Isaac Newton, Euler, Fourier, Gauss, Lobachevsky, Galois, Ada Lovelace, Boole, Riemann, Cantor, Sofia Kovalevskaia, Poincaré, Hilbert, Emmy Noether, Ramanujan, Gödel, Turing, Mandelbrot, and Thurston.