Quantum mechanics of time travel

Last updated

Until recently, most studies on time travel have been based upon classical general relativity. Coming up with a quantum version of time travel requires physicists to figure out the time evolution equations for density states in the presence of closed timelike curves (CTC).

Contents

Novikov [1] had conjectured that once quantum mechanics is taken into account, self-consistent solutions always exist for all time machine configurations, and initial conditions. However, it has been noted such solutions are not unique in general, in violation of determinism, unitarity and linearity.

The application of self-consistency to quantum mechanical time machines has taken two main routes. Novikov's rule applied to the density matrix itself gives the Deutsch prescription. Applied instead to the state vector, the same rule gives nonunitary physics with a dual description in terms of post-selection.

Deutsch's prescription

In 1991, David Deutsch [2] came up with a proposal for the time evolution equations, with special note as to how it resolves the grandfather paradox and nondeterminism. However, his resolution to the grandfather paradox is considered unsatisfactory to some people, because it states the time traveller reenters another parallel universe, and that the actual quantum state is a quantum superposition of states where the time traveller does and does not exist.

He made the simplifying assumption that we can split the quantum system into a subsystem A external to the closed timelike curve, and a CTC part. Also, he assumed that we can combine all the time evolution between the exterior and the CTC into a single unitary operator U. This presupposes the Schrödinger picture. We have a tensor product for the combined state of both systems. He makes the further assumption there is no correlation between the initial density state of A and the density state of the CTC. This assumption is not time-symmetric, which he tried to justify by appealing to measurement theory and the second law of thermodynamics. He proposed that the density state restricted to the CTC is a fixed-point of

.

He showed that such fixed points always exist. He justified this choice by noting the expectation value of any CTC observable will match after a loop. However, this could lead to "multivalued" histories if memory is preserved around the loop. In particular, his prescription is incompatible with path integrals unless we allow for multivalued fields. Another point to note is in general, we have more than one fixed point, and this leads to nondeterminism in the time evolution. He suggested the solution to use is the one with the maximum entropy. The final external state is given by . Pure states can evolve into mixed states.

This leads to seemingly paradoxical resolutions to the grandfather paradox. Assume the external subsystem is irrelevant, and only a qubit travels in the CTC. Also assume during the course around the time machine, the value of the qubit is flipped according to the unitary operator

.

The most general fixed-point solution is given by

where a is a real number between and . This is an example of the nonuniqueness of solutions. The solution maximizing the von Neumann entropy is given by . We can think of this as a mixture (not superposition) between the states and . This leads to an interesting interpretation that if the qubit starts off with a value of 0, it will end up with a value of 1, and vice versa, but this should not be problematic according to Deutsch because the qubit ends up in a different parallel universe in the many worlds interpretation.

Later researchers have noted that if his prescription turned out to be right, computers in the vicinity of a time machine can solve PSPACE-complete problems. [3]

However, it was shown in an article by Tolksdorf and Verch that Deutsch's CTC fixed point condition can be fulfilled to arbitrary precision in any quantum system described according to relativistic quantum field theory on spacetimes where CTCs are excluded, casting doubts on whether Deutsch's condition is really characteristic of quantum processes mimicking CTCs in the sense of general relativity. [4] In a later article, [5] the same authors have shown that Deutsch's CTC fixed point condition can also be fulfilled in any system subject to the laws of classical statistical mechanics, even if it is not built up by quantum systems. The authors conclude that hence, Deutsch's condition is not specific to quantum physics, nor does it depend on the quantum nature of a physical system so that it can be fulfilled. In consequence, Tolksdorf and Verch further conclude that Deutsch's condition isn't sufficiently specific to allow statements about time travel scenarios or their hypothetical realization by quantum physics, and that Deutsch's attempt to explain the possibility of his proposed time-travel scenario using the many-world interpretation of quantum mechanics is misleading.

Lloyd's prescription

An alternative proposal was later presented by Seth Lloyd [6] [7] based upon post-selection and path integrals. In particular, the path integral is over single-valued fields, leading to self-consistent histories. He assumed it is ill-defined to speak of the actual density state of the CTC itself, and we should only focus upon the density state outside the CTC. His proposal for the time evolution of the external density state is

, where .

If , no solution exists due to destructive interference in the path integral. For instance, the grandfather paradox has no solution, and leads to an inconsistent state. If a solution exists, it is clearly unique.

Entropy and computation

A related description of CTC physics was given in 2001 by Michael Devin, and applied to thermodynamics. [8] [9] The same model with the introduction of a noise term allowing for inexact periodicity, allows the grandfather paradox to be resolved, and clarifies the computational power of a time machine assisted computer. Each time traveling qubit has an associated negentropy, given approximately by the logarithm of the noise of the communication channel. Each use of the time machine can be used to extract as much work from a thermal bath. In a brute force search for a randomly generated password, the entropy of the unknown string can be effectively reduced by a similar amount. Because the negentropy and computational power diverge as the noise term goes to zero, complexity class may not be the best way to describe the capabilities of time machines.

See also

Related Research Articles

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system which is entangled with another, without describing their combined state.
<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence, the process in which a system's behaviour changes from that which can be explained by quantum mechanics to that which can be explained by classical mechanics. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.

In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation, master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems. It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings. The resulting dynamics is no longer unitary, but still satisfies the property of being trace-preserving and completely positive for any initial condition.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

<span class="mw-page-title-main">Quantum tomography</span> Reconstruction of quantum states based on measurements

Quantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state. Such a set of observations is sometimes called a quorum. The term tomography was first used in the quantum physics literature in a 1993 paper introducing experimental optical homodyne tomography.

In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Dirac in 1928.

In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.

In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

The Hong–Ou–Mandel effect is a two-photon interference effect in quantum optics that was demonstrated in 1987 by three physicists from the University of Rochester: Chung Ki Hong (홍정기), Zheyu Ou (区泽宇), and Leonard Mandel. The effect occurs when two identical single-photons enter a 1:1 beam splitter, one in each input port. When the temporal overlap of the photons on the beam splitter is perfect, the two photons will always exit the beam splitter together in the same output mode, meaning that there is zero chance that they will exit separately with one photon in each of the two outputs giving a coincidence event. The photons have a 50:50 chance of exiting (together) in either output mode. If they become more distinguishable, the probability of them each going to a different detector will increase. In this way, the interferometer coincidence signal can accurately measure bandwidth, path lengths, and timing. Since this effect relies on the existence of photons and the second quantization it can not be fully explained by classical optics.

A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

A Werner state is a × -dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form . That is, it is a bipartite quantum state that satisfies

In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distanceT is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.

In the theory of quantum communication, an amplitude damping channel is a quantum channel that models physical processes such as spontaneous emission. A natural process by which this channel can occur is a spin chain through which a number of spin states, coupled by a time independent Hamiltonian, can be used to send a quantum state from one location to another. The resulting quantum channel ends up being identical to an amplitude damping channel, for which the quantum capacity, the classical capacity and the entanglement assisted classical capacity of the quantum channel can be evaluated.

Quantum artificial life is the application of quantum algorithms with the ability to simulate biological behavior. Quantum computers offer many potential improvements to processes performed on classical computers including machine learning and artificial intelligence. Artificial intelligence applications are often inspired by our own brains; this is a form of biomimicry. This can and has been implemented to a certain extent on classical computers, but quantum computers offer many advantages in the simulation of artificial life. Artificial life and artificial intelligence are extremely similar but their ambitions differ; the goal of studying artificial life is to understand living beings better, while the goal of artificial intelligence is to create intelligent beings.

References

  1. Friedman, John; Morris, Michael; Novikov, Igor; Echeverria, Fernando; Klinkhammer, Gunnar; Thorne, Kip; Yurtsever, Ulvi (15 September 1990). "Cauchy problem in spacetimes with closed timelike curves" (PDF). Physical Review. D. 42 (6): 1915–1930. Bibcode:1990PhRvD..42.1915F. doi:10.1103/PhysRevD.42.1915. PMID   10013039.
  2. Deutsch, David (15 Nov 1991). "Quantum mechanics near closed timelike lines". Physical Review. D. 44 (10): 3197–3217. Bibcode:1991PhRvD..44.3197D. doi:10.1103/PhysRevD.44.3197. PMID   10013776.
  3. Aaronson, Scott; Watrous, John (Feb 2009). "Closed Timelike Curves Make Quantum and Classical Computing Equivalent". Proceedings of the Royal Society. A. 465 (2102): 631–647. arXiv: 0808.2669 . Bibcode:2009RSPSA.465..631A. doi:10.1098/rspa.2008.0350. S2CID   745646.
  4. Tolksdorf, Juergen; Verch, Rainer (2018). "Quantum physics, fields and closed timelike curves: The D-CTC condition in quantum field theory". Communications in Mathematical Physics. 357 (1): 319–351. arXiv: 1609.01496 . Bibcode:2018CMaPh.357..319T. doi:10.1007/s00220-017-2943-5. S2CID   55346710.
  5. Tolksdorf, Juergen; Verch, Rainer (2021). "The D-CTC condition is generically fulfilled in classical (non-quantum) statistical systems". Foundations of Physics. 51 (93): 93. arXiv: 1912.02301 . Bibcode:2021FoPh...51...93T. doi:10.1007/s10701-021-00496-z. S2CID   208637445.
  6. Lloyd, Seth; Maccone, Lorenzo; Garcia-Patron, Raul; Giovannetti, Vittorio; Shikano, Yutaka; Pirandola, Stefano; Rozema, Lee A.; Darabi, Ardavan; Soudagar, Yasaman; Shalm, Lynden K.; Steinberg, Aephraim M. (27 January 2011). "Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency". Physical Review Letters. 106 (4): 040403. arXiv: 1005.2219 . Bibcode:2011PhRvL.106d0403L. doi:10.1103/PhysRevLett.106.040403. PMID   21405310. S2CID   18442086.
  7. Lloyd, Seth; Maccone, Lorenzo; Garcia-Patron, Raul; Giovannetti, Vittorio; Shikano, Yutaka (2011). "The quantum mechanics of time travel through post-selected teleportation". Physical Review D. 84 (2): 025007. arXiv: 1007.2615 . Bibcode:2011PhRvD..84b5007L. doi:10.1103/PhysRevD.84.025007. S2CID   15972766.
  8. Devin, Michael (2001). Thermodynamics of Time Machines(unpublished) (Thesis). University of Arkansas.
  9. Devin, Michael (2013). "Thermodynamics of Time Machines". arXiv: 1302.3298 [gr-qc].