Quantum mechanics of time travel

Last updated

The theoretical study of time travel generally follows the laws of general relativity. Quantum mechanics requires physicists to solve equations describing how probabilities behave along closed timelike curves (CTCs), theoretical loops in spacetime that might make it possible to travel through time. [1] [2] [3] [4]

Contents

In the 1980s, Igor Novikov proposed the self-consistency principle. [5] According to this principle, any changes made by a time traveler in the past must not create paradoxes. If a time traveler tries to change the past, the laws of physics will ensure that history remains consistent. This means that the outcomes of events will always align with the traveler’s actions in a way that prevents any contradictions.

However, Novikov's self-consistency principle may be incompatible when considered alongside certain interpretations of quantum mechanics, particularly two fundamental principles of quantum mechanics, unitarity and linearity. Unitarity ensures that the total probability of all possible outcomes in a quantum system always sums to 1, preserving the predictability of quantum events. Linearity ensures that quantum evolution preserves superpositions, allowing quantum systems to exist in multiple states simultaneously. [6]

There are two main approaches to explaining quantum time travel while incorporating Novikov's self-consistency. The first approach uses density matrices to describe the probabilities of different outcomes in quantum systems, providing a statistical framework that can accommodate the constraints of CTCs. The second approach involves state vectors, [7] which describe the quantum state of a system. This approach sometimes leads to concepts that deviate from the conventional understanding of quantum mechanics.

Deutsch's prescription for closed timelike curves (CTCs)

In 1991, David Deutsch proposed a method to explain how quantum systems interact with closed timelike curves (CTCs) using time evolution equations. This method aims to address paradoxes like the grandfather paradox, [8] [9] which suggest that a time traveler who stops their own birth would create a contradiction. One interpretation of Deutsch's approach is that it implies the time traveler might end up in a parallel universe rather than their own, although the formalism itself does not explicitly require the existence of parallel universes.

Method overview

To analyze the system, Deutsch divided it into two parts: a subsystem outside the CTC and the CTC itself. To describe the combined evolution of both parts over time, he used a unitary operator (U). This approach relies on a specific mathematical framework to describe quantum systems. The overall state is represented by combining the density matrices (ρ) for both the subsystem and the CTC using a tensor product (⊗). [10] Notably, Deutsch assumed no initial correlation between these two parts. While this assumption breaks time symmetry (meaning the laws of physics wouldn't behave the same forwards and backwards in time), Deutsch justifies it using arguments from measurement theory and the second law of thermodynamics. [8]

Deutsch's proposal uses the following key equation to describe the fixed-point density matrix (ρCTC) for the CTC:

.

The unitary evolution involving both the CTC and the external subsystem determines the density matrix of the CTC as a fixed point, as represented by this equation. The trace operation () indicates that we are considering the partial trace over the subsystem outside the CTC, focusing on the state of the CTC itself.

Ensuring Self-Consistency

Deutsch's proposal ensures that the CTC always returns to a self-consistent state after a loop. This means that the overall state of the CTC remains consistent. However, this raises concerns. If a system retains memories after traveling through the CTC, it could create complex scenarios where it appears to have experienced different possible pasts. [11]

Furthermore, Deutsch's method might not work with common probability calculations in quantum mechanics, like path integrals, unless we take into account the chance that the system goes through different paths that all lead to the same outcome. There can also be multiple solutions (fixed points) for the system's state after the loop, introducing a form of randomness (nondeterminism). Deutsch suggested using the solution with the highest entropy, which aligns with the natural tendency of systems to evolve towards higher entropy states.

To calculate the final state outside the CTC, a specific mathematical operation (trace) considers only the external system's state after the combined evolution of both the external system and the CTC. The tensor product (⊗) of the density matrices for both systems describes this combined evolution. Then, a unitary time evolution operator (U) is applied to the whole system.

Implications and criticisms

Deutsch's approach has intriguing implications for paradoxes like the grandfather paradox. Consider a scenario in which everything, except a single quantum bit (qubit), travels through a time machine and flips its value according to a specific operator:

.

Deutsch argues that the solution maximizing von Neumann entropy (a measure of how scrambled or mixed the information in the qubit is) is the most relevant. In this case, the qubit becomes a mix of starting at 0 and ending at 1, or vice versa. Deutsch's interpretation, which can align with the many-worlds view of quantum mechanics, avoids paradoxes because the qubit travels to a different parallel universe after interacting with the CTC. [12]

Researchers have explored the potential of Deutsch's ideas. Deutsch's CTC time travel, if possible, might allow computers near a time machine to solve problems far beyond classical computers, but the feasibility of CTCs and time travel remains a topic of debate and further research is needed. [13] [14]

Despite its theoretical nature, Deutsch's proposal has faced significant criticism. [15] For instance, Tolksdorf and Verch demonstrated that quantum systems without CTCs can still achieve Deutsch's criterion with high accuracy. [16] [17] This finding casts doubt on the uniqueness of Deutsch's criterion for quantum simulations of CTCs as theorized in general relativity. Their research showed that classical systems governed by statistical mechanics could also meet these criteria, [18] implying that the peculiarities attributed to quantum mechanics might not be essential for simulating CTCs. Based on these results, it appears that Deutsch's criterion is not specific to quantum mechanics and may not be a good way to figure out the possibilities of real-time travel or how quantum mechanics might make it possible. Consequently, Tolksdorf and Verch argue that their findings doubt the validity of Deutsch's explanation of his time travel scenario using the many-worlds interpretation.

Lloyd's prescription: Post-selection and time travel with CTCs

Seth Lloyd proposed an alternative approach to time travel with closed timelike curves (CTCs), based on "post-selection" and path integrals. [19] Path integrals are a powerful tool in quantum mechanics that involve summing probabilities over all possible ways a system could evolve, even if those paths don't strictly follow a single timeline. [20] Unlike classical approaches, path integrals allow for consistent histories even with CTCs. Lloyd argues that focusing on the state of the system outside the CTC is more relevant.

He proposes an equation that explains the transformation of the density matrix, which represents the system's state outside the CTC, following a time loop:

, where .

In this equation:

The transformation relies on the trace, a specific mathematical operation within the CTC that reduces a complex matrix to a single number. If this trace term is zero (), the equation has no solution, indicating an inconsistency like the grandfather paradox. Conversely, a non-zero trace leads to a unique solution for the external system's state.

Thus, Lloyd's approach ensures self-consistency and avoids paradoxes by allowing only histories consistent with the system's initial and final states. This aligns with the concept of post-selection, where only certain outcomes are considered based on predetermined criteria, effectively filtering out paradoxical scenarios.

Entropy and computation

Michael Devin (2001) proposed a model that incorporates closed timelike curves (CTCs) into thermodynamics, [21] suggesting it as a potential way to address the grandfather paradox. [22] [23] This model introduces a "noise" factor to account for imperfections in time travel, proposing a framework that could avoid paradoxes.

Devin's model posits that each cycle of time travel involving a quantum bit (qubit) carries a usable form of energy, termed "negentropy" (negative entropy, representing a decrease in disorder). The model suggests that the amount of negentropy is proportional to the noise level introduced during time travel. This implies that a time machine could potentially extract work from a thermal bath in proportion to the negentropy generated.

Moreover, Devin's model indicates that a time machine could significantly reduce the computational effort required to solve complex problems, such as cracking codes through trial and error. CTCs could allow for a more efficient computation process because the system can effectively "reuse" information from different timelines, leading to faster problem-solving capabilities.

However, the model also predicts that as the noise level approaches zero, the usable energy and computational power will become infinitely large. This implies that conventional computational complexity classes, which categorize problems based on their difficulty for classical computers, might not apply to time machines with very low noise levels. Devin's model is entirely theoretical and speculative and has not been confirmed by experimental evidence.

See also

Related Research Articles

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:

  1. when the preparation of the systems lead to numerous pure states in the ensemble, and thus one must deal with the statistics of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment. In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.
<span class="mw-page-title-main">Quantum superposition</span> Principle of quantum mechanics

Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position. More precisely, the state of a system is given by a linear combination of all the eigenfunctions of the Schrödinger equation governing that system.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.

In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949, who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity which would replace GR, an idea which Stephen Hawking labeled the chronology protection conjecture. Others note that if every closed timelike curve in a given spacetime passes through an event horizon, a property which can be called chronological censorship, then that spacetime with event horizons excised would still be causally well behaved and an observer might not be able to detect the causal violation.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales—even when the latter theory states that it should be possible. The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation.

<span class="mw-page-title-main">Black hole information paradox</span> Puzzle of disappearance of information in a black hole

The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing—not even light—can escape. In the 1970s, Stephen Hawking applied the semiclassical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation. He also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and depend only on its mass, electric charge and angular momentum.

Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum state preparation, and faulty measurements. Effective quantum error correction would allow quantum computers with low qubit fidelity to execute algorithms of higher complexity or greater circuit depth.

A temporal paradox, time paradox, or time travel paradox, is a paradox, an apparent contradiction, or logical contradiction associated with the idea of time travel or other foreknowledge of the future. While the notion of time travel to the future complies with the current understanding of physics via relativistic time dilation, temporal paradoxes arise from circumstances involving hypothetical time travel to the past – and are often used to demonstrate its impossibility.

In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is

In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions.

In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, answering a question posed by George W. Mackey, an accomplishment that was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics. Multiple variations have been proven in the years since. Gleason's theorem is of particular importance for the field of quantum logic and its attempt to find a minimal set of mathematical axioms for quantum theory.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.

<span class="mw-page-title-main">Quantum thermodynamics</span> Study of the relations between thermodynamics and quantum mechanics

Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905, Albert Einstein argued that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized, obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules. Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs from quantum statistical mechanics in the emphasis on dynamical processes out of equilibrium. In addition, there is a quest for the theory to be relevant for a single individual quantum system.

The no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in the black hole information paradox and in fact any process that tends to lose information completely. The no-hiding theorem is robust to imperfection in the physical process that seemingly destroys the original information.

In quantum mechanics, a quantum speed limit (QSL) is a limitation on the minimum time for a quantum system to evolve between two distinguishable (orthogonal) states. QSL theorems are closely related to time-energy uncertainty relations. In 1945, Leonid Mandelstam and Igor Tamm derived a time-energy uncertainty relation that bounds the speed of evolution in terms of the energy dispersion. Over half a century later, Norman Margolus and Lev Levitin showed that the speed of evolution cannot exceed the mean energy, a result known as the Margolus–Levitin theorem. Realistic physical systems in contact with an environment are known as open quantum systems and their evolution is also subject to QSL. Quite remarkably it was shown that environmental effects, such as non-Markovian dynamics can speed up quantum processes, which was verified in a cavity QED experiment.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

References

  1. Smeenk, Christopher; Arntzenius, Frank; Maudlin, Tim (2023), "Time Travel and Modern Physics", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 2024-07-04
  2. "Closed Timelike Curves". encyclopedia.pub. Archived from the original on 2024-07-16. Retrieved 2024-07-04.
  3. Ringbauer, Martin; Broome, Matthew A.; Myers, Casey R.; White, Andrew G.; Ralph, Timothy C. (2014-06-19). "Experimental simulation of closed timelike curves". Nature Communications. 5 (1): 4145. doi:10.1038/ncomms5145. ISSN   2041-1723. PMID   24942489. Archived from the original on 2024-07-01. Retrieved 2024-07-15.
  4. Miriam Frankel. "Quantum time travel: The experiment to 'send a particle into the past'". New Scientist. Archived from the original on 2024-07-04. Retrieved 2024-07-04.
  5. "Time Travel Explained: The Novikov Self-Consistency Principle And Its Implications". Time Quiver. 2024-02-07. Archived from the original on 2024-07-16. Retrieved 2024-07-04.
  6. Friedman, John; Morris, Michael; Novikov, Igor; Echeverria, Fernando; Klinkhammer, Gunnar; Thorne, Kip; Yurtsever, Ulvi (15 September 1990). "Cauchy problem in spacetimes with closed timelike curves" (PDF). Physical Review. 42 (6): 1915–1930. Bibcode:1990PhRvD..42.1915F. doi:10.1103/PhysRevD.42.1915. PMID   10013039. Archived (PDF) from the original on 24 July 2018. Retrieved 11 August 2019.
  7. "4.2: States, State Vectors, and Linear Operators". Physics LibreTexts. 2022-01-13. Retrieved 2024-07-04.
  8. 1 2 Deutsch, David (15 Nov 1991). "Quantum mechanics near closed timelike lines". Physical Review. 44 (10): 3197–3217. Bibcode:1991PhRvD..44.3197D. doi:10.1103/PhysRevD.44.3197. PMID   10013776.
  9. Lindley, David (2011-02-04). "Time Travel without Regrets". Physics. 27 (4): 5. arXiv: 1005.2219 . Bibcode:2011PhRvL.106d0403L. doi:10.1103/PhysRevLett.106.040403. PMID   21405310. Archived from the original on 2024-07-16. Retrieved 2024-07-04.
  10. Michael A. Nielsen, Isaac L. Chuang. "Quantum Computation and Quantum Information" (PDF). Archived (PDF) from the original on 2024-04-20. Retrieved 2024-07-04.
  11. Lucas, Dunlap (2015). "The Metaphysics of D-CTCs: On the Underlying Assumptions of Deutsch's Quantum Solution to the Paradoxes of Time Travel". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 56: 39. arXiv: 1510.02742 . Bibcode:2016SHPMP..56...39D. doi:10.1016/j.shpsb.2016.09.001.
  12. Wallace, David (2003-09-01). "Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. Quantum Information and Computation. 34 (3): 415–439. arXiv: quant-ph/0303050 . Bibcode:2003SHPMP..34..415W. doi:10.1016/S1355-2198(03)00036-4. ISSN   1355-2198. Archived from the original on 2024-07-16. Retrieved 2024-07-04.
  13. Aaronson, Scott; Watrous, John (Feb 2009). "Closed Timelike Curves Make Quantum and Classical Computing Equivalent". Proceedings of the Royal Society. 465 (2102): 631–647. arXiv: 0808.2669 . Bibcode:2009RSPSA.465..631A. doi:10.1098/rspa.2008.0350. S2CID   745646.
  14. Billings, Lee. "Time Travel Simulation Resolves "Grandfather Paradox"". Scientific American. Archived from the original on 2024-06-23. Retrieved 2024-07-16.
  15. "A problem with David Deutsch's model of time travel". Conjectures and Refutations. 2015-09-02. Archived from the original on 2023-06-04. Retrieved 2024-07-16.
  16. Tolksdorf, Juergen; Verch, Rainer (2018). "Quantum physics, fields and closed timelike curves: The D-CTC condition in quantum field theory". Communications in Mathematical Physics. 357 (1): 319–351. arXiv: 1609.01496 . Bibcode:2018CMaPh.357..319T. doi:10.1007/s00220-017-2943-5. S2CID   55346710.
  17. Yuan, Xiao; Assad, Syed M.; Thompson, Jayne; Haw, Jing Yan; Vedral, Vlatko; Ralph, Timothy C.; Lam, Ping Koy; Weedbrook, Christian; Gu, Mile (2015). "Replicating the benefits of Deutschian closed timelike curves without breaking causality" (PDF). npj Quantum Information. 1: 15007. arXiv: 1412.5596 . Bibcode:2015npjQI...115007Y. doi:10.1038/npjqi.2015.7. Archived (PDF) from the original on 2024-07-16. Retrieved 2024-07-04.
  18. Tolksdorf, Juergen; Verch, Rainer (2021). "The D-CTC condition is generically fulfilled in classical (non-quantum) statistical systems". Foundations of Physics. 51 (93): 93. arXiv: 1912.02301 . Bibcode:2021FoPh...51...93T. doi:10.1007/s10701-021-00496-z. S2CID   208637445.
  19. Lloyd, Seth; Maccone, Lorenzo; Garcia-Patron, Raul; Giovannetti, Vittorio; Shikano, Yutaka; Pirandola, Stefano; Rozema, Lee A.; Darabi, Ardavan; Soudagar, Yasaman; Shalm, Lynden K.; Steinberg, Aephraim M. (27 January 2011). "Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency" (PDF). Physical Review Letters. 106 (4) 040403. doi:10.1103/PhysRevLett.106.040403. hdl:1721.1/63096. PMID   21405310. S2CID   18442086.
  20. Lloyd, Seth; Maccone, Lorenzo; Garcia-Patron, Raul; Giovannetti, Vittorio; Shikano, Yutaka (2011). "The quantum mechanics of time travel through post-selected teleportation" (PDF). Physical Review D. 84 (2) 025007. doi:10.1103/PhysRevD.84.025007. hdl:1721.1/66971. S2CID   15972766.
  21. Devin, Michael (2013-02-08), Thermodynamics of Time Machines, arXiv: 1302.3298
  22. Devin, Michael (2001). Thermodynamics of Time Machines(unpublished) (Thesis). University of Arkansas.
  23. Devin, Michael (2013). "Thermodynamics of Time Machines". arXiv: 1302.3298 [gr-qc].