Abell 1201 Brightest Cluster Galaxy | |
---|---|
Observation data (J2000 epoch) | |
Constellation | Leo |
Right ascension | 11h 13m 01.1s [1] |
Declination | +13° 25′ 40″ [1] |
Redshift | 0.169 |
Distance | 2.735 Gly (838.5 Mpc) |
Group or cluster | Abell 1201 |
Absolute magnitude (V) | -24.23 ± 0.09 [2] |
Characteristics | |
Type | E3 [2] elliptical galaxy, brightest cluster galaxy |
Apparent size (V) | 0.38 × 0.29 |
Half-light radius (physical) | 15 kpc [2] |
Other designations | |
LEDA 1430978 |
Abell 1201 BCG (short for Abell 1201 Brightest Cluster Galaxy) is a type-cD massive elliptical galaxy residing as the brightest cluster galaxy (BCG) of the Abell 1201 galaxy cluster. [3] At a redshift of 0.169, this system is around 2.7 billion light-years from Earth, and offset about 11 kiloparsecs from the X-ray peak of the intracluster gas. With an ellipticity of 0.32±0.02, [2] the stellar distribution is far from spherical. In solar units, the total stellar luminosity is 4×1011 L☉ in SDSS r-band, and 1.6×1012 L☉ in 2MASS K-band. [4] Half the stars orbit within an effective radius of 15 kpc, and their central velocity dispersion is about 285 km s−1 within 5 kpc rising to 360 km s−1 at 20 kpc distance. [5]
The BCG also acts as a gravitational lens, bending the light of a more distant background galaxy (at redshift 0.451) into an apparent tangential arc about 6 kpc to one side. [1] This makes the galaxy an important case in investigations of the intrinsic properties of dark matter.
Detailed models of the lens mass distribution, starlight and stellar kinematics indicates that the galaxy cluster's dark halo has a shallow inner density gradient [2] and perhaps a soft dark matter core. At face value, this is incompatible with the dark matter cusp predicted by collisionless Cold dark matter theories, and adds to evidence that dark matter experiences additional non-gravitational forces.
Years later, a faint smaller counterimage to the arc was discovered at a closer radius. [4] Explaining the position and brightness of this counterimage requires a dark central concentration of unseen mass. Based on lens modelling, it could be a supermassive black hole equivalent to 13 billion suns: (1.3±0.6)×1010 M☉. At the time of measurement, this is one of the most massive black hole candidates (without relying on assumptions about quasar luminosities and efficiencies). This UMBH may be ten times larger than expected from the usual scaling relations between black holes and host galaxies. [5]
However, alternative methods of modelling the stellar velocity dispersion maps (accounting for an aggregate constraint on the lens mass) reveals an ambiguity between the UMBH mass and the dark halo profile. [5] In solutions where the UMBH is more massive, the dark matter is more cuspy. In solutions where the UMBH is smaller or absent, the dark matter is more cored. The dark halo's ellipticity and the mass-to-light ratio of stars also enter the ambiguity. Thus, if the standard computational models are robust, then Abell 1201 BCG presents a dilemma and a challenge to either the conventional ideas of black hole growth or the simplest theories about dark matter, or both.
In 2023, a follow-up study [3] of higher resolution images with greater signal-to-noise ratio, using lens modelling techniques, strongly supported the presence of a central supermassive black hole and provided a lower as well as an upper limit and an upward revision of its mass to (3.27±2.12)×1010 M☉. If correct, this would be the first identification and mass determination of a supermassive black hole using analysis of a gravitational lens, a method the authors suggest could be useful for the discovery of more supermassive black holes at higher redshift, i.e., outside the local universe, which previously has been limited to actively accreting black holes. [3]
The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a D25 isophotal diameter of about 46.56 kiloparsecs (152,000 light-years) and is approximately 765 kpc (2.5 million light-years) from Earth. The galaxy's name stems from the area of Earth's sky in which it appears, the constellation of Andromeda, which itself is named after the princess who was the wife of Perseus in Greek mythology.
A supermassive black hole is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (M☉). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, including light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at its center. For example, the Milky Way galaxy has a supermassive black hole at its center, corresponding to the radio source Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei (AGNs) and quasars.
IC 1101 is a class S0 supergiant (cD) lenticular galaxy at the center of the Abell 2029 galaxy cluster. It has an isophotal diameter at about 123.65 to 169.61 kiloparsecs. It possesses a diffuse core which is the largest known core of any galaxy to date, and contains a supermassive black hole, one of the largest discovered. IC 1101 is located at 354.0 megaparsecs from Earth. It was discovered on 19 June 1790, by the British astronomer William Herschel.
In astrophysics and particle physics, self-interacting dark matter (SIDM) is an alternative class of dark matter particles which have strong interactions, in contrast to the standard cold dark matter model (CDM). SIDM was postulated in 2000 as a solution to the core-cusp problem. In the simplest models of DM self-interactions, a Yukawa-type potential and a force carrier φ mediates between two dark matter particles. On galactic scales, DM self-interaction leads to energy and momentum exchange between DM particles. Over cosmological time scales this results in isothermal cores in the central region of dark matter haloes.
While the presence of any mass bends the path of light passing near it, this effect rarely produces the giant arcs and multiple images associated with strong gravitational lensing. Most lines of sight in the universe are thoroughly in the weak lensing regime, in which the deflection is impossible to detect in a single background source. However, even in these cases, the presence of the foreground mass can be detected, by way of a systematic alignment of background sources around the lensing mass. Weak gravitational lensing is thus an intrinsically statistical measurement, but it provides a way to measure the masses of astronomical objects without requiring assumptions about their composition or dynamical state.
The type-cD galaxy is a galaxy morphology classification, a subtype of type-D giant elliptical galaxy. Characterized by a large halo of stars, they can be found near the centres of some rich galaxy clusters. They are also known as supergiant ellipticals or central dominant galaxies.
The Phoenix Cluster is a massive, Abell class type I galaxy cluster located at its namesake, southern constellation of Phoenix. It was initially detected in 2010 during a 2,500 square degree survey of the southern sky using the Sunyaev–Zeldovich effect by the South Pole Telescope collaboration. It is one of the most massive galaxy clusters known, with the mass on the order of 2×1015M☉, and is the most luminous X-ray cluster discovered, producing more X-rays than any other known massive cluster. It is located at a comoving distance of 8.61 billion light-years from Earth. About 42 member galaxies were identified and currently listed in the SIMBAD Astronomical Database, though the real number may be as high as 1,000.
NGC 1277 is a lenticular galaxy in the constellation of Perseus. It is a member of the Perseus Cluster of galaxies and is located approximately 73 Mpc (megaparsecs) or 220 million light-years from the Milky Way. It has an apparent magnitude of about 14.7. It was discovered on December 4, 1875 by Lawrence Parsons, 4th Earl of Rosse.
ESO 146-5 is the designation given to a giant interacting elliptical galaxy in the center of the Abell 3827 cluster. It is well noted due to its strong gravitational lensing effect, measurements of which show the galaxy to be one of the most massive in the known universe.
Holmberg 15A is a supergiant elliptical galaxy and the central dominant galaxy of the Abell 85 galaxy cluster in the constellation Cetus, about 700 million light-years from Earth. It was discovered c. 1937 by Erik Holmberg. It became well known when it was reported to have the largest core ever observed in a galaxy, spanning some 15,000 light years, however this was subsequently refuted.
NGC 708 is an elliptical galaxy located 240 million light-years away in the constellation Andromeda and was discovered by astronomer William Herschel on September 21, 1786. It is classified as a cD galaxy and is the brightest member of Abell 262. NGC 708 is a weak FR I radio galaxy and is also classified as a type 2 Seyfert galaxy.
NGC 1380 is a lenticular galaxy located in the constellation Fornax. It is located at a distance of circa 60 million light years from Earth, which, given its apparent dimensions, means that NGC 1380 is about 85,000 light years across. It was discovered by James Dunlop on September 2, 1826. It is a member of the Fornax Cluster.
IC 1459 is an elliptical galaxy located in the constellation Grus. It is located at a distance of circa 85 million light-years from Earth, which, given its apparent dimensions, means that IC 1459 is about 130,000 light-years across. It was discovered by Edward Emerson Barnard in 1892.
Direct collapse black holes (DCBHs) are high-mass black hole seeds that form from the direct collapse of a large amount of material. They putatively formed within the redshift range z=15–30, when the Universe was about 100–250 million years old. Unlike seeds formed from the first population of stars (also known as Population III stars), direct collapse black hole seeds are formed by a direct, general relativistic instability. They are very massive, with a typical mass at formation of ~105 M☉. This category of black hole seeds was originally proposed theoretically to alleviate the challenge in building supermassive black holes already at redshift z~7, as numerous observations to date have confirmed.
Abell 2219 BCG, also known as LEDA 2285869, is a massive type-cD elliptical galaxy residing as the brightest cluster galaxy (BCG) in the Abell 2219 galaxy cluster located in constellation Hercules. At the redshift of 0.224, the galaxy is around 2.7 billion light-years from Earth.
Abell 1942 BCG, also known as PGC 1256558, is a massive elliptical galaxy of type-cD residing as the brightest cluster galaxy of the Abell 1942 galaxy cluster, located in the constellation Virgo. With a redshift of 0.224, the galaxy is located nearly 2.7 billion light-years away from Earth.
Abell 697 BCG, also known as LEDA 2079433, is a massive type-cD elliptical galaxy residing as the brightest cluster galaxy in Abell 697 galaxy cluster. It is located in the constellation of Lynx and has a redshift of 0.28, meaning the galaxy is located 3.5 billion light-years away from Earth.
2MASX J09175344+5143379 also known as PGC 2399018, is a massive elliptical galaxy located in the constellation of Ursa Major. At the redshift of 0.216, the galaxy is located 2.9 billion light-years from Earth and considered the brightest cluster galaxy (BCG) in the galaxy cluster, Abell 773.
Abell 68 is massive and rich galaxy cluster located in the constellation of Pisces with a projected co-moving distance of approximately 1124.6 Mpc or 3.668 billion light-years away from Earth. The cluster is especially notable for its gravitational lensing and was first discovered by George O. Abell in 1958.