An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. [1] Atoms are cooled and congregate at the potential extrema (at maxima for blue-detuned lattices, and minima for red-detuned lattices). The resulting arrangement of trapped atoms resembles a crystal lattice [2] and can be used for quantum simulation.
Atoms trapped in the optical lattice may move due to quantum tunneling, even if the potential well depth of the lattice points exceeds the kinetic energy of the atoms, which is similar to the electrons in a conductor. [3] However, a superfluid–Mott insulator transition [4] may occur, if the interaction energy between the atoms becomes larger than the hopping energy when the well depth is very large. In the Mott insulator phase, atoms will be trapped in the potential minima and cannot move freely, which is similar to the electrons in an insulator. In the case of fermionic atoms, if the well depth is further increased the atoms are predicted to form an antiferromagnetic, i.e. Néel state at sufficiently low temperatures. [5]
Trapping atoms in standing waves of light was first proposed by V. S. Letokhov in 1968. [6]
There are two important parameters of an optical lattice: the potential well depth and the periodicity.
The potential experienced by the atoms is related to the intensity of the laser used to generate the optical lattice. The potential depth of the optical lattice can be tuned in real time by changing the power of the laser, which is normally controlled by an acousto-optic modulator (AOM). The AOM is tuned to deflect a variable amount of the laser power into the optical lattice. Active power stabilization of the lattice laser can be accomplished by feedback of a photodiode signal to the AOM.
The periodicity of the optical lattice can be tuned by changing the wavelength of the laser or by changing the relative angle between the two laser beams. The real-time control of the periodicity of the lattice is still a challenging task. The wavelength of the laser cannot easily be varied over a large range in real time, and so the periodicity of the lattice is normally controlled by the relative angle between the laser beams. [7] However, it is difficult to keep the lattice stable while changing the relative angles, since the interference is sensitive to the relative phase between the laser beams. Titanium-sapphire lasers, with their large tunable range, provide a possible platform for direct tuning of wavelength in optical lattice systems.
Continuous control of the periodicity of a one-dimensional optical lattice while maintaining trapped atoms in-situ was first demonstrated in 2005 using a single-axis servo-controlled galvanometer. [8] This "accordion lattice" was able to vary the lattice periodicity from 1.30 to 9.3 μm. More recently, a different method of real-time control of the lattice periodicity was demonstrated, [9] in which the center fringe moved less than 2.7 μm while the lattice periodicity was changed from 0.96 to 11.2 μm. Keeping atoms (or other particles) trapped while changing the lattice periodicity remains to be tested more thoroughly experimentally. Such accordion lattices are useful for controlling ultracold atoms in optical lattices, where small spacing is essential for quantum tunneling, and large spacing enables single-site manipulation and spatially resolved detection. Site-resolved detection of the occupancy of lattice sites of both bosons and fermions within a high tunneling regime is regularly performed in quantum gas microscopes. [10] [11]
The trapping mechanism is via the Stark shift, where off-resonant light causes shifts to an atom's internal structure. The effect of the Stark shift is to create a potential proportional to the intensity. The effect of a light field on an atom is to induce an electric dipole moment as a result of the oscillating electric field. This induced dipole will then interact with the electric field, leading to an energy shift , where , where , is the dynamic polarizability of the atomic transition resonant at and is the detuning of the light field from resonance. In the case of ("red-detuning"), the induced dipole will be in phase with the field and thus the resulting potential energy gradient will point in the direction of higher intensity. This is the same trapping mechanism as in optical dipole traps (ODTs), with the only major difference being that the intensity of an optical lattice has a much more dramatic spatial variation than a standard ODT. [1]
A 1D optical lattice is formed by two counter-propagating laser beams of the same polarization. The beams will interfere, leading to a series of minima and maxima separated by , where is the wavelength of the light used to create the optical lattice. The resulting potential experienced by the atoms will be .
By use of additional laser beams, two- or three-dimensional optical lattices may be constructed. A 2D optical lattice may be constructed by interfering two orthogonal optical standing waves, giving rise to an array of 1D potential tubes. Likewise, three orthogonal optical standing waves can give rise to a 3D array of sites which may be approximated as tightly confining harmonic oscillator potentials. [2]
The trapping potential experienced by atoms in an optical dipole trap is weak, generally below 1 mK. Thus atoms must be cooled significantly before loading them into the optical lattice. Cooling techniques used to this end include magneto-optical traps, Doppler cooling, polarization gradient cooling, Raman cooling, resolved sideband cooling, and evaporative cooling. [1]
If the periodic potential is to be added following condensation, as opposed to performing evaporative cooling in the lattice potential, it is necessary to consider the conditions for adiabatic loading of the lattice. The lattice must be slowly ramped up in intensity such that the condensate remains in its ground state in order to load the condensate into the ground band of the lattice. The timescale of the turn on will in general be set by the energy separation between the ground band and the first excited band [2] .
Once cold atoms are loaded into the optical lattice, they will experience heating by various mechanisms such as spontaneous scattering of photons from the optical lattice lasers. These mechanisms generally limit the lifetime of optical lattice experiments. [1]
Once cooled and trapped in an optical lattice, the atoms can be manipulated or left to evolve. Common manipulations involve the "shaking" of the optical lattice by varying the relative phase between the counterpropagating beams or by modulating the frequency of one of the counterpropagating beams, or amplitude modulation of the lattice. After evolving in response to the lattice potential and any manipulations, the atoms can be imaged via absorption imaging.
A common observation technique is time of flight (TOF) imaging. TOF imaging works by first waiting some amount of time for the atoms to evolve in the lattice potential, then turning off the lattice potential (by switching off the laser power with an AOM). The atoms, now free, spread out at different rates according to their momenta. By controlling the amount of time the atoms are allowed to evolve, the distance travelled by atoms maps onto their momentum state when the lattice was turned off. Because the atoms in the lattice can only change in momentum by , a characteristic pattern in a TOF image of an optical-lattice system is a series of peaks along the lattice axis at momenta , where . Using TOF imaging, the momentum distribution of atoms in the lattice can be determined. Combined with in-situ absorption images (taken with the lattice still on), this is enough to determine the phase space density of the trapped atoms, an important metric for diagnosing Bose–Einstein condensation (or more generally, the formation of quantum degenerate phases of matter).
Atoms in an optical lattice provide an ideal quantum system where all parameters are highly controllable and where simplified models of condensed-matter physics may be experimentally realized. Because atoms can be imaged directly – something difficult to do with electrons in solids – they can be used to study effects that are difficult to observe in real crystals. Quantum gas microscopy techniques applied to trapped atom optical-lattice systems can even provide single-site imaging resolution of their evolution. [10]
By interfering differing numbers of beams in various geometries, varying lattice geometries can be created. These range from the simplest case of two counterpropagating beams forming a one-dimensional lattice, to more complex geometries like hexagonal lattices. The variety of geometries that can be produced in optical lattice systems allow the physical realization of different Hamiltonians, such as the Bose–Hubbard model, [4] the Kagome lattice and Sachdev–Ye–Kitaev model, [12] and the Aubry–André model. By studying the evolution of atoms under the influence of these Hamiltonians, which may be mapped to Hamiltonians describing the dynamics of electrons in various lattice models, insight about the solutions to the Hamiltonian can be gained. This is particularly relevant to complicated Hamiltonians which are not easily solvable using theoretical or numerical techniques, such as those for strongly correlated systems.
The best atomic clocks in the world use atoms trapped in optical lattices, to obtain narrow spectral lines that are unaffected by the Doppler effect and recoil. [13] [14]
They are also promising candidates for quantum information processing. [15] [16]
Shaken optical lattices – where the phase of the lattice is modulated, causing the lattice pattern to scan back and forth – can be used to control the momentum state of the atoms trapped in the lattice. This control is exercised to split the atoms into populations of different momenta, propagate them to accumulate phase differences between the populations, and recombine them to produce an interference pattern. [17]
Besides trapping cold atoms, optical lattices have been widely used in creating gratings and photonic crystals. They are also useful for sorting microscopic particles, [18] and may be useful for assembling cell arrays.
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero, i.e., 0 K. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum-mechanical phenomena, particularly wavefunction interference, become apparent macroscopically. More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter.
Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuitive that laser cooling often results in sample temperatures approaching absolute zero. It is a routine step in many atomic physics experiments where the laser-cooled atoms are then subsequently manipulated and measured, or in technologies, such as atom-based quantum computing architectures. Laser cooling relies on the change in momentum when an object, such as an atom, absorbs and re-emits a photon. For example, if laser light illuminates a warm cloud of atoms from all directions and the laser's frequency is tuned below an atomic resonance, the atoms will be cooled. This common type of laser cooling relies on the Doppler effect where individual atoms will preferentially absorb laser light from the direction opposite to the atom's motion. The absorbed light is re-emitted by the atom in a random direction. After repeated emission and absorption of light the net effect on the cloud of atoms is that they will expand more slowly. The slower expansion reflects a decrease in the velocity distribution of the atoms, which corresponds to a lower temperature and therefore the atoms have been cooled. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity, therefore the lower the distribution of velocities, the lower temperature of the particles.
Optical tweezers are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation.
In physics, a Tonks–Girardeau gas is a Bose gas in which the repulsive interactions between bosonic particles confined to one dimension dominate the system's physics. It is named after physicists Lewi Tonks, who developed a classical model in 1936, and Marvin D. Girardeau who generalized it to the quantum regime. It is not a Bose–Einstein condensate as it does not demonstrate any of the necessary characteristics, such as off-diagonal long-range order or a unitary two-body correlation function, even in a thermodynamic limit and as such cannot be described by a macroscopically occupied orbital in the Gross–Pitaevskii formulation.
Electromagnetically induced transparency (EIT) is a coherent optical nonlinearity which renders a medium transparent within a narrow spectral range around an absorption line. Extreme dispersion is also created within this transparency "window" which leads to "slow light", described below. It is in essence a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium.
A trapped-ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap. Lasers are applied to induce coupling between the qubit states or coupling between the internal qubit states and the external motional states.
In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially-varying magnetic field to create a trap which can produce samples of cold, neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvin, depending on the atomic species, which is two or three times below the photon recoil limit. However, for atoms with an unresolved hyperfine structure, such as 7Li, the temperature achieved in a MOT will be higher than the Doppler cooling limit.
The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.
The electron electric dipole momentde is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field:
In condensed matter physics, an ultracold atom is an atom with a temperature near absolute zero. At such temperatures, an atom's quantum-mechanical properties become important.
In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
In atomic physics, Raman cooling is a sub-recoil cooling technique that allows the cooling of atoms using optical methods below the limitations of Doppler cooling, Doppler cooling being limited by the recoil energy of a photon given to an atom. This scheme can be performed in simple optical molasses or in molasses where an optical lattice has been superimposed, which are called respectively free space Raman cooling and Raman sideband cooling. Both techniques make use of Raman scattering of laser light by the atoms.
In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is already in its quantum ground state. Time crystals were first proposed theoretically by Frank Wilczek in 2012 as a time-based analogue to common crystals – whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged periodically in both space and time. Several different groups have demonstrated matter with stable periodic evolution in systems that are periodically driven. In terms of practical use, time crystals may one day be used as quantum computer memory.
Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.
Tilman Esslinger is a German experimental physicist. He is Professor at ETH Zurich, Switzerland, and works in the field of ultracold quantum gases and optical lattices.
In theoretical physics, the curvature renormalization group (CRG) method is an analytical approach to determine the phase boundaries and the critical behavior of topological systems. Topological phases are phases of matter that appear in certain quantum mechanical systems at zero temperature because of a robust degeneracy in the ground-state wave function. They are called topological because they can be described by different (discrete) values of a nonlocal topological invariant. This is to contrast with non-topological phases of matter that can be described by different values of a local order parameter. States with different values of the topological invariant cannot change into each other without a phase transition. The topological invariant is constructed from a curvature function that can be calculated from the bulk Hamiltonian of the system. At the phase transition, the curvature function diverges, and the topological invariant correspondingly jumps abruptly from one value to another. The CRG method works by detecting the divergence in the curvature function, and thus determining the boundaries between different topological phases. Furthermore, from the divergence of the curvature function, it extracts scaling laws that describe the critical behavior, i.e. how different quantities behave as the topological phase transition is approached. The CRG method has been successfully applied to a variety of static, periodically driven, weakly and strongly interacting systems to classify the nature of the corresponding topological phase transitions.
Monika Aidelsburger is a German quantum physicist, Professor and Group Leader at the Ludwig Maximilian University of Munich. Her research considers quantum simulation and ultra cold atomic gases trapped in optical lattices. In 2021, she was awarded both the Alfried-Krupp-Förderpreis and Klung Wilhelmy Science Award.
Phase space crystal is the state of a physical system that displays discrete symmetry in phase space instead of real space. For a single-particle system, the phase space crystal state refers to the eigenstate of the Hamiltonian for a closed quantum system or the eigenoperator of the Liouvillian for an open quantum system. For a many-body system, phase space crystal is the solid-like crystalline state in phase space. The general framework of phase space crystals is to extend the study of solid state physics and condensed matter physics into phase space of dynamical systems. While real space has Euclidean geometry, phase space is embedded with classical symplectic geometry or quantum noncommutative geometry.
John Morrissey Doyle is an American physicist working in the field of Atomic, Molecular, and Optical (AMO) physics and Precision Particle Physics. He is the Henry B. Silsbee Professor of Physics, Director of the Japanese Undergraduate Research Exchange Program (JUREP), Co-Director of the Harvard Quantum Initiative as well as Co-director of the Ph.D. Program in Quantum Science and Engineering at Harvard University.
A neutral atom quantum computer is a modality of quantum computers built out of Rydberg atoms; this modality has many commonalities with trapped-ion quantum computers. As of December 2023, the concept has been used to demonstrate a 48 logical qubit processor.