This article needs additional citations for verification .(December 2009) |
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters (see Brillouin scattering) off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in sum-frequency generation or difference-frequency generation between phonons and photons.
A typical AOM operates under Bragg condition, where the incident light comes at Bragg angle from the perpendicular of the sound wave's propagation. [1] [2]
When the incident light beam is at Bragg angle, a diffraction pattern emerges where an order of diffracted beam occurs at each angle θ that satisfies: [3]
Here, m = ..., −2, −1, 0, +1, +2, ... is the order of diffraction, λ is the wavelength of light in vacuum, and Λ is the wavelength of the sound. [4] Note that m = 0 order travels in the same direction as the incident beam.
Diffraction from a sinusoidal modulation in a thin crystal mostly results in the m = −1, 0, +1 diffraction orders. Cascaded diffraction in medium thickness crystals leads to higher orders of diffraction. In thick crystals with weak modulation, only phasematched orders are diffracted; this is called Bragg diffraction. The angular deflection can range from 1 to 5000 beam widths (the number of resolvable spots). Consequently, the deflection is typically limited to tens of milliradians.
The angular separation between adjacent orders for Bragg diffraction is twice the Bragg angle, i.e.
The amount of light diffracted by the sound wave depends on the intensity of the sound. Hence, the intensity of the sound can be used to modulate the intensity of the light in the diffracted beam. Typically, the intensity that is diffracted into m = 0 order can be varied between 15% and 99% of the input light intensity. Likewise, the intensity of the m = +1 order can be varied between 0% and 80%.
An expression of the efficiency in m = +1 order is: [5]
where the external phase excursion
To obtain the same efficiency for different wavelength, the RF power in the AOM has to be proportional to the square of the wavelength of the optical beam. Note that this formula also tells us that, when we start at a high RF power P, it might be higher than the first peak in the sine squared function, in which case as we increase P, we would settle at the second peak with a very high RF power, leading to overdriving the AOM and potential damage to the crystal or other components. To avoid this problem, one should always start with a very low RF power, and slowly increase it to settle at the first peak.
Note that there are two configurations that satisfies Bragg Condition: If the incident beam's wavevector's component on the sound wave's propagation direction goes against the sound wave, the Bragg diffraction/scattering process will result in the maximum efficiency into m = +1 order, which has a positive frequency shift; However, if the incident beam goes along the sound wave, the maximum diffraction efficiency into m = –1 order is achieved, which has a negative frequency shift.
One difference from Bragg diffraction is that the light is scattering from moving planes. A consequence of this is the frequency of the diffracted beam f in order m will be Doppler-shifted by an amount equal to the frequency of the sound wave F.
This frequency shift can be also understood by the fact that energy and momentum (of the photons and phonons) are conserved in the scattering process. A typical frequency shift varies from 27 MHz, for a less-expensive AOM, to 1 GHz, for a state-of-the-art commercial device. In some AOMs, two acoustic waves travel in opposite directions in the material, creating a standing wave. In this case the spectrum of the diffracted beam contains multiple frequency shifts, in any case integer multiples of the frequency of the sound wave.
In addition, the phase of the diffracted beam will also be shifted by the phase of the sound wave. The phase can be changed by an arbitrary amount.
Collinear transverse acoustic waves or perpendicular longitudinal waves can change the polarization. The acoustic waves induce a birefringent phase-shift, much like in a Pockels cell [ dubious – discuss ]. The acousto-optic tunable filter, especially the dazzler, which can generate variable pulse shapes, is based on this principle. [6]
Acousto-optic modulators are much faster than typical mechanical devices such as tiltable mirrors. The time it takes an AOM to shift the exiting beam in is roughly limited to the transit time of the sound wave across the beam (typically 5 to 100 ns). This is fast enough to create active modelocking in an ultrafast laser. When faster control is necessary electro-optic modulators are used. However, these require very high voltages (e.g. 1...10 kV), whereas AOMs offer more deflection range, simple design, and low power consumption (less than 3 W). [7]
Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.
In optics, a diffraction grating is an optical grating with a periodic structure that diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions. The emerging coloration is a form of structural coloration. The directions or diffraction angles of these beams depend on the wave (light) incident angle to the diffraction grating, the spacing or periodic distance between adjacent diffracting elements on the grating, and the wavelength of the incident light. The grating acts as a dispersive element. Because of this, diffraction gratings are commonly used in monochromators and spectrometers, but other applications are also possible such as optical encoders for high-precision motion control and wavefront measurement.
In optics, any optical instrument or system – a microscope, telescope, or camera – has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.
In many areas of science, Bragg's law, Wulff–Bragg's condition, or Laue–Bragg interference are a special case of Laue diffraction, giving the angles for coherent scattering of waves from a large crystal lattice. It describes how the superposition of wave fronts scattered by lattice planes leads to a strict relation between the wavelength and scattering angle. This law was initially formulated for X-rays, but it also applies to all types of matter waves including neutron and electron waves if there are a large number of atoms, as well as visible light with artificial periodic microscale lattices.
In optics, the Airy disk and Airy pattern are descriptions of the best-focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance from the object, and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object and is given by the Fresnel diffraction equation.
Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.
In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography.
Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound through an ultrasonic grating.
An acousto-optic deflector (AOD) is a device that uses the interaction between sound waves and light waves to deflect or redirect a laser beam. AODs are essentially the same as acousto-optic modulators (AOMs). In both an AOM and an AOD, the amplitude and frequency of different orders are adjusted as light is diffracted.
Electrophoretic light scattering is based on dynamic light scattering. The frequency shift or phase shift of an incident laser beam depends on the dispersed particles mobility. With dynamic light scattering, Brownian motion causes particle motion. With electrophoretic light scattering, oscillating electric field performs this function.
Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape. Volume holograms are also called thick holograms or Bragg holograms.
The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924.
An ultrasonic grating is a type of diffraction grating produced by the interference of ultrasonic waves in a medium, which alters the physical properties of the medium in a grid-like pattern. The term acoustic grating is a more general term that includes operation at audible frequencies.
The photoacoustic Doppler effect is a type of Doppler effect that occurs when an intensity modulated light wave induces a photoacoustic wave on moving particles with a specific frequency. The observed frequency shift is a good indicator of the velocity of the illuminated moving particles. A potential biomedical application is measuring blood flow.
An optical modulator is an optical device which is used to modulate a beam of light with a perturbation device. It is a kind of transmitter to convert information to optical binary signal through optical fiber or transmission medium of optical frequency in fiber optic communication. There are several methods to manipulate this device depending on the parameter of a light beam like amplitude modulator (majority), phase modulator, polarization modulator etc. The easiest way to obtain modulation is modulation of intensity of a light by the current driving the light source. This sort of modulation is called direct modulation, as opposed to the external modulation performed by a light modulator. For this reason, light modulators are called external light modulators. According to manipulation of the properties of material modulators are divided into two groups, absorptive modulators and refractive modulators. Absorption coefficient can be manipulated by Franz-Keldysh effect, Quantum-Confined Stark Effect, excitonic absorption, or changes of free carrier concentration. Usually, if several such effects appear together, the modulator is called electro-absorptive modulator. Refractive modulators most often make use of electro-optic effect, other modulators are made with acousto-optic effect, magneto-optic effect such as Faraday and Cotton-Mouton effects. The other case of modulators is spatial light modulator (SLM) which is modified two dimensional distribution of amplitude & phase of an optical wave.
The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.
In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.