Acousto-optics

Last updated

Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound (or sound in general) through an ultrasonic grating.

Contents

A diffraction image showing the acousto-optic effect. Beugungsbild.jpg
A diffraction image showing the acousto-optic effect.

Introduction

In general, acousto-optic effects are based on the change of the refractive index of a medium due to the presence of sound waves in that medium. Sound waves produce a refractive index grating in the material, and it is this grating that is "seen" by the light wave. [1] These variations in the refractive index, due to the pressure fluctuations, may be detected optically by refraction, diffraction, and interference effects; [2] reflection may also be used.

The acousto-optic effect is extensively used in the measurement and study of ultrasonic waves. However, the growing principal area of interest is in acousto-optical devices for the deflection, modulation, signal processing and frequency shifting of light beams. This is due to the increasing availability and performance of lasers, which have made the acousto-optic effect easier to observe and measure. Technical progress in both crystal growth and high frequency piezoelectric transducers has brought valuable benefits to acousto-optic components' improvements.

Along with the current applications, acousto-optics presents interesting possible application. It can be used in nondestructive testing, structural health monitoring and biomedical applications, where optically generated and optical measurements of ultrasound gives a non-contact method of imaging.

History

Optics has had a very long and full history, from ancient Greece, through the renaissance and modern times. [3] As with optics, acoustics has a history of similar duration, again starting with the ancient Greeks. [4] In contrast, the acousto-optic effect has had a relatively short history, beginning with Brillouin predicting the diffraction of light by an acoustic wave, being propagated in a medium of interaction, in 1922. [5] This was then confirmed with experimentation in 1932 by Debye and Sears, [6] and also by Lucas and Biquard. [7]

The particular case of diffraction on the first order, under a certain angle of incidence, (also predicted by Brillouin), has been observed by Rytow in 1935. Raman and Nath (1937) have designed a general ideal model of interaction taking into account several orders. This model was developed by Phariseau (1956) for diffraction including only one diffraction order.

Acousto-optic effect

The acousto-optic effect is a specific case of photoelasticity, where there is a change of a material's permittivity, , due to a mechanical strain . Photoelasticity is the variation of the optical indicatrix coefficients caused by the strain given by, [8]

where is the photoelastic tensor with components, , = 1,2,...,6.

Specifically in the acousto-optic effect, the strains are a result of the acoustic wave which has been excited within a transparent medium. This then gives rise to the variation of the refractive index. For a plane acoustic wave propagating along the z axis, the change in the refractive index can be expressed as [8]

where is the undisturbed refractive index, is the angular frequency, is the wavenumber of the acoustic wave, and is the amplitude of variation in the refractive index generated by the acoustic wave, and is given as, [8]

The generated refractive index, (2), gives a diffraction grating moving with the velocity given by the speed of the sound wave in the medium. Light which then passes through the transparent material, is diffracted due to this generated refraction index, forming a prominent diffraction pattern. This diffraction pattern corresponds with a conventional diffraction grating at angles from the original direction, and is given by, [2]

where is the wavelength of the optical wave, is the wavelength of the acoustic wave and is the integer order maximum.

Light diffracted by an acoustic wave of a single frequency produces two distinct diffraction types. These are Raman–Nath diffraction and Bragg diffraction.

Raman–Nath diffraction is observed with relatively low acoustic frequencies, typically less than 10 MHz, and with a small acousto-optic interaction length, ℓ, which is typically less than 1 cm. This type of diffraction occurs at an arbitrary angle of incidence, .

In contrast, Bragg diffraction occurs at higher acoustic frequencies, usually exceeding 100 MHz. The observed diffraction pattern generally consists of two diffraction maxima; these are the zeroth and the first orders. However, even these two maxima only appear at definite incidence angles close to the Bragg angle, . The first order maximum or the Bragg maximum is formed due to a selective reflection of the light from the wave fronts of ultrasonic wave. The Bragg angle is given by the expression, [8]

where is the wavelength of the incident light wave (in a vacuum), is the acoustic frequency, is the velocity of the acoustic wave, is the refractive index for the incident optical wave, and is the refractive index for the diffracted optical waves.

In general, there is no point at which Bragg diffraction takes over from Raman–Nath diffraction. It is simply a fact that as the acoustic frequency increases, the number of observed maxima is gradually reduced due to the angular selectivity of the acousto-optic interaction. Traditionally, the type of diffraction, Bragg or Raman–Nath, is determined by the conditions and respectively, where Q is given by, [8]

which is known as the Klein–Cook parameter. Since, in general, only the first order diffraction maximum is used in acousto-optic devices, Bragg diffraction is preferable due to the lower optical losses. However, the acousto-optic requirements for Bragg diffraction limit the frequency range of acousto-optic interaction. As a consequence, the speed of operation of acousto-optic devices is also limited.

Acousto-optic devices

Acousto-optic modulator

An acousto-optic modulator Acousto-optic Modulator-en.svg
An acousto-optic modulator

By varying the parameters of the acoustic wave, including the amplitude, phase, frequency and polarization, properties of the optical wave may be modulated. The acousto-optic interaction also makes it possible to modulate the optical beam by both temporal and spatial modulation.

A simple method of modulating the optical beam travelling through the acousto-optic device is done by switching the acoustic field on and off. When off the light beam is undiverted, the intensity of light directed at the Bragg diffraction angle is zero. When switched on and Bragg diffraction occurs, the intensity at the Bragg angle increases. So the acousto-optic device is modulating the output along the Bragg diffraction angle, switching it on and off. The device is operated as a modulator by keeping the acoustic wavelength (frequency) fixed and varying the drive power to vary the amount of light in the deflected beam. [9]

There are several limitations associated with the design and performance of acousto-optic modulators. The acousto-optic medium must be designed carefully to provide maximum light intensity in a single diffracted beam. The time taken for the acoustic wave to travel across the diameter of the light beam gives a limitation on the switching speed, and hence limits the modulation bandwidth. The finite velocity of the acoustic wave means the light cannot be fully switched on or off until the acoustic wave has traveled across the light beam. So to increase the bandwidth the light must be focused to a small diameter at the location of the acousto-optic interaction. This minimum focused size of the beam represents the limit for the bandwidth.

Acousto-optic tunable filter

The principle behind the operation of acousto-optic tunable filters is based on the wavelength of the diffracted light being dependent on the acoustic frequency. By tuning the frequency of the acoustic wave, the desired wavelength of the optical wave can be diffracted acousto-optically.

There are two types of the acousto-optic filters, the collinear and non-collinear filters. The type of filter depends on geometry of acousto-optic interaction.

The polarization of the incident light can be either ordinary or extraordinary. For the definition, we assume ordinary polarization. Here the following list of symbols is used, [10]

: the angle between the acoustic wave vector and the crystallographic axis z of the crystal;

: the wedge angle between the input and output faces of the filter cell (the wedge angle is necessary for eliminating the angular shift of the diffracted beam caused by frequency changing);

: the angle between the incident light wave vector and [110] axis of the crystal;

: the angle between the input face of the cell and acoustic wave vector;

: the angle between deflected and non-deflected light at the central frequency;

: the transducer length.

The incidence angle and the central frequency of the filter are defined by the following set of equations, [10]

Refractive indices of the ordinary () and extraordinary () polarized beams are determined by taking into account their dispersive dependence.

The sound velocity, , depends on the angle α, such that, [10]

and are the sound velocities along the axes [110] and [001], consecutively. The value of is determined by the angles and , [10]

The angle between the diffracted and non-diffracted beams defines the view field of the filter; it can be calculated from the formula, [10]

Input light need not be polarized for a non-collinear design. Unpolarized input light is scattered into orthogonally polarized beams separated by the scattering angle for the particular design and wavelength. If the optical design provides an appropriate beam block for the unscattered light, then two beams (images) are formed in an optical passband that is nearly equivalent in both orthogonally linearly polarized output beams (differing by the Stokes and Anti-Stokes scattering parameter). Because of dispersion, these beams move slightly with scanning rf frequency.

Acousto-optic deflectors

An acousto-optic deflector spatially controls the optical beam. In the operation of an acousto-optic deflector the power driving the acoustic transducer is kept on, at a constant level, while the acoustic frequency is varied to deflect the beam to different angular positions. The acousto-optic deflector makes use of the acoustic frequency dependent diffraction angle, where a change in the angle as a function of the change in frequency is given as, [11]

where is the optical wavelength of the beam and is the velocity of the acoustic wave.

AOD technology has made practical the Bose–Einstein condensation for which the 2001 Nobel Prize in Physics was awarded to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman. [12] Another application of acoustic-optical deflection is optical trapping of small molecules.

AODs are essentially the same as acousto-optic modulators (AOMs). In an AOM, only the amplitude of the sound wave is modulated (to modulate the intensity of the diffracted laser beam), whereas in an AOD, both the amplitude and frequency are adjusted, making the engineering requirements tighter for an AOD than an AOM.

Materials

All materials display the acousto-optic effect. Fused silica is used as a standard to compare when measuring photoelastic coefficients. Lithium niobate is often used in high frequency devices. Softer materials, such as arsenic trisulfide, tellurium dioxide and tellurite glasses, lead silicate, Ge55As12S33, mercury(I) chloride, lead(II) bromide, with slow acoustic waves make high efficiency devices at lower frequencies, and give high resolution.

See also

Related Research Articles

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

<span class="mw-page-title-main">Wave interference</span> Phenomenon resulting from the superposition of two waves

In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity or lower amplitude if the two waves are in phase or out of phase, respectively. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves as well as in loudspeakers as electrical waves.

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

<span class="mw-page-title-main">Optical depth</span> Physics concept

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

<span class="mw-page-title-main">Dispersion (optics)</span> Dependence of phase velocity on frequency

In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; sometimes the term chromatic dispersion is used for specificity to optics in particular. A medium having this common property may be termed a dispersive medium.

<span class="mw-page-title-main">Fabry–Pérot interferometer</span> Optical device with parallel mirrors

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

In many areas of science, Bragg's law, Wulff–Bragg's condition or Laue–Bragg interference, are a special case of Laue diffraction, giving the angles for coherent scattering of waves from a large crystal lattice. It describes how the superposition of wave fronts scattered by lattice planes leads to a strict relation between the wavelength and scattering angle. This law was initially formulated for X-rays, but it also applies to all types of matter waves including neutron and electron waves if there are a large number of atoms, as well as visible light with artificial periodic microscale lattices.

<span class="mw-page-title-main">Etendue</span> Measure of the "spread" of light in an optical system

Etendue or étendue is a property of light in an optical system, which characterizes how "spread out" the light is in area and angle. It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent, and the AΩ product. Throughput and AΩ product are especially used in radiometry and radiative transfer where it is related to the view factor. It is a central concept in nonimaging optics.

<span class="mw-page-title-main">Acousto-optic modulator</span> Device which diffracts light via sound waves

An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in sum-frequency generation or difference-frequency generation between phonons and photons.

Self-phase modulation (SPM) is a nonlinear optical effect of light–matter interaction. An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect. This variation in refractive index will produce a phase shift in the pulse, leading to a change of the pulse's frequency spectrum.

<span class="mw-page-title-main">Dispersive prism</span> Device used to disperse light

In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components. Different wavelengths (colors) of light will be deflected by the prism at different angles. This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.

An acousto-optic deflector (AOD) is a device that uses the interaction between sound waves and light waves to deflect or redirect a laser beam. AODs are essentially the same as acousto-optic modulators (AOMs). In both an AOM and an AOD, the amplitude and frequency of different orders are adjusted as light is diffracted.

Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape. Volume holograms are also called thick holograms or Bragg holograms.

An ultrasonic grating is a type of diffraction grating produced by the interference of ultrasonic waves in a medium, which alters the physical properties of the medium in a grid-like pattern. The term acoustic grating is a more general term that includes operation at audible frequencies.

<span class="mw-page-title-main">Contrast transfer function</span>

The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.

Laser linewidth is the spectral linewidth of a laser beam.

Holographic optical element (HOE) is an optical component (mirror, lens, directional diffuser, etc.) that produces holographic images using principles of diffraction. HOE is most commonly used in transparent displays, 3D imaging, and certain scanning technologies. The shape and structure of the HOE is dependent on the piece of hardware it is needed for, and the coupled wave theory is a common tool used to calculate the diffraction efficiency or grating volume that helps with the design of an HOE. Early concepts of the holographic optical element can be traced back to the mid-1900s, coinciding closely with the start of holography coined by Dennis Gabor. The application of 3D visualization and displays is ultimately the end goal of the HOE; however, the cost and complexity of the device has hindered the rapid development toward full 3D visualization. The HOE is also used in the development of augmented reality(AR) by companies such as Google with Google Glass or in research universities that look to utilize HOEs to create 3D imaging without the use of eye-wear or head-wear. Furthermore, the ability of the HOE to allow for transparent displays have caught the attention of the US military in its development of better head-up displays (HUD) which is used to display crucial information for aircraft pilots.

<span class="mw-page-title-main">Acousto-optic programmable dispersive filter</span>

An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR and calomel in the MIR (3–20 μm). Recently introduced Lithium niobate crystals allow for high-repetition rate operation (> 100 kHz) owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of few-cycle optical pulses and as a part of pulse-measurement schemes. Although sharing a lot in principle of operation with an acousto-optic tunable filter, the AOPDF should not be confused with it, since in the former the tunable parameter is the transfer function and in the latter it is the impulse response.

In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency.

Optical holography is a technique which enables an optical wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images but it also has a wide range of other applications.

References

  1. Gal, M. (2005). "Modulation and switching of light" (Lecture Notes on Optoelectronics). The University of New South Wales.
  2. 1 2 Scruby, C.B.; Drain, L.E. (January 1, 1990). Laser Ultrasonics: Techniques and Applications. Taylor & Francis. ISBN   978-0-7503-0050-6.
  3. Taylor, L.S. "Optics Highlights: 1. Ancient History". Archived from the original on 2007-05-12. Retrieved 2007-08-07.
  4. "The History of Acoustics". Archived from the original on 3 July 2007. Retrieved 2007-08-07.
  5. Brillouin, L. (1922). "Diffusion of Light and X-rays by a Transparent Homogeneous Body". Annales de Physique. 17: 88–122. doi:10.1051/anphys/192209170088.
  6. Debye, P.; Sears, F.W. (1932). "On the scattering of light by supersonic waves". PNAS. 18 (6): 409–414. Bibcode:1932PNAS...18..409D. doi: 10.1073/pnas.18.6.409 . PMC   1076242 . PMID   16587705.
  7. Lucas, R.; Biquard, P. (1932). "Optical properties of solid and liquid medias subjected to high-frequency elastic vibrations" (PDF). Journal de Physique. 71: 464–477. doi:10.1051/jphysrad:01932003010046400.
  8. 1 2 3 4 5 "Acousto-optic effect" . Retrieved 2007-08-07.
  9. Simcik, J. "ELECTRO-OPTIC AND ACOUSTO-OPTIC DEVICES". Archived from the original on 2004-10-18. Retrieved 2004-10-28.
  10. 1 2 3 4 5 "Acousto-optic effect: Filters" . Retrieved 2007-08-07.
  11. "Acousto-optic effect: Deflector" . Retrieved 2007-08-07.
  12. "The Nobel Prize in Physics 2001". NobelPrize.org. Retrieved 2020-12-14.