Uhuru (satellite)

Last updated

Uhuru
X-Ray Explorer Satellite.jpg
Uhuru (X-ray Explorer Satellite)
Mission typeAstronomy
Operator NASA
COSPAR ID 1970-107A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 4797
Website heasarc.gsfc.nasa.gov/docs/uhuru/uhuru.html
Mission duration3 years
Spacecraft properties
Dry mass141.5 kilograms (312 lb)
Start of mission
Launch date12 December 1970, 10:53:50 (1970-12-12UTC10:53:50Z) UTC
Rocket Scout B S175C
Launch site San Marco
End of mission
Last contactMarch 1973 (1973-04)
Decay date5 April 1979
Orbital parameters
Reference system Geocentric
Regime Low Earth
Eccentricity 0.002956
Perigee altitude 520.0 kilometers (323.1 mi)
Apogee altitude 560.0 kilometers (348.0 mi)
Inclination 3.0 degrees
Period 95.70 minutes
Epoch 12 December 1970, 05:54:00 UTC [1]
Instruments
All-Sky X-Ray Survey
 

Uhuru was the first satellite launched specifically for the purpose of X-ray astronomy. It was also known as the X-ray Explorer Satellite, SAS-A (for Small Astronomy Satellite A, being first of the three-spacecraft SAS series), SAS 1, or Explorer 42. The observatory was launched on 12 December 1970 into an initial orbit of about 560 km apogee, 520 km perigee, 3 degrees inclination, with a period of 96 minutes. The mission ended in March 1973. Uhuru was a scanning mission, with a spin period of ~12 minutes. It performed the first comprehensive survey of the entire sky for X-ray sources, with a sensitivity of about 0.001 times the intensity of the Crab nebula.

Contents

Objectives

The main objectives of the mission were: [2]

Instrumentation

The payload consisted of two sets of proportional counters, each with ~0.084 m2 effective area. The counters were sensitive with more than 10% efficiency to X-ray photons in the ~2–20 keV range. The lower energy limit was determined by the attenuation of the beryllium windows of the counter plus a thin thermal shroud that was needed to maintain temperature stability of the spacecraft. The upper energy limit was determined by the transmission properties of the counter filling gas. Pulse-shape discrimination and anticoincidence techniques were used to filter out emissions of particles and undesirable high-energy photons in the background. Pulse-height analysis in eight energy channels was used to obtain information on the energy spectrum of the incident photons. The two sets of counters were placed back to back and were collimated to 0.52° × 0.52° and 5.2° × 5.2° (full width at half maximum) respectively. While the 0.52° detector gave finer angular resolution, the 5.2° detector had higher sensitivity for isolated sources. [2]

Results

Uhuru observatotions of Her X-1 Herx1 spin.gif
Uhuru observatotions of Her X-1

Uhuru achieved several outstanding scientific advances, including the discovery and detailed study of the pulsing accretion-powered binary X-Ray sources such as Cen X-3, Vela X-1, and Her X-1, the identification of Cygnus X-1, the first strong candidate for an astrophysical black hole, and many important extragalactic sources. The Uhuru Catalog, issued in four successive versions, the last being the 4U catalog, was the first comprehensive X-ray catalog, contains 339 objects and covers the whole sky in the 2–6 keV band. [3] The final version of the source catalog is known as the 4U Catalog; [4] earlier versions were the 2U and 3U catalogs. Sources are referenced as, e.g., "4U 1700-37".

Naming

The satellite's name, "Uhuru", is the Swahili word for "freedom". It was named in recognition of the hospitality of Kenya from where it was launched, using the Italian San Marco launch platform near Mombasa.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">BeppoSAX</span> Italian-Dutch satellite used for X-ray astronomy

BeppoSAX was an Italian–Dutch satellite for X-ray astronomy which played a crucial role in resolving the origin of gamma-ray bursts (GRBs), the most energetic events known in the universe. It was the first X-ray mission capable of simultaneously observing targets over more than 3 decades of energy, from 0.1 to 300 kiloelectronvolts (keV) with relatively large area, good energy resolution and imaging capabilities. BeppoSAX was a major programme of the Italian Space Agency (ASI) with the participation of the Netherlands Agency for Aerospace Programmes (NIVR). The prime contractor for the space segment was Alenia while Nuova Telespazio led the development of the ground segment. Most of the scientific instruments were developed by the Italian National Research Council (CNR) while the Wide Field Cameras were developed by the Netherlands Institute for Space Research (SRON) and the LECS was developed by the astrophysics division of the European Space Agency's ESTEC facility.

<span class="mw-page-title-main">Compton Gamma Ray Observatory</span> NASA space observatory designed to detect X-rays and gamma rays (1991–2000)

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with energies from 20 keV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000. It was deployed in low Earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 16,300 kilograms (35,900 lb).

<span class="mw-page-title-main">Rossi X-ray Timing Explorer</span> NASA satellite of the Explorer program

The Rossi X-ray Timing Explorer (RXTE) was a NASA satellite that observed the time variation of astronomical X-ray sources, named after physicist Bruno Rossi. The RXTE had three instruments — an All Sky Monitor, the High-Energy X-ray Timing Experiment (HEXTE) and the Proportional Counter Array. The RXTE observed X-rays from black holes, neutron stars, X-ray pulsars and X-ray bursts. It was funded as part of the Explorer program, and was also called Explorer 69.

<span class="mw-page-title-main">ROSAT</span> Satellite X-ray telescope

ROSAT was a German Aerospace Center-led satellite X-ray telescope, with instruments built by West Germany, the United Kingdom and the United States. It was launched on 1 June 1990, on a Delta II rocket from Cape Canaveral, on what was initially designed as an 18-month mission, with provision for up to five years of operation. ROSAT operated for over eight years, finally shutting down on 12 February 1999.

<span class="mw-page-title-main">High Energy Astronomy Observatory 1</span> X-ray telescope launched in 1977

HEAO-1 was an X-ray telescope launched in 1977. HEAO-1 surveyed the sky in the X-ray portion of the electromagnetic spectrum, providing nearly constant monitoring of X-ray sources near the ecliptic poles and more detailed studies of a number of objects by observations lasting 3–6 hours. It was the first of NASA's three High Energy Astronomy Observatories, HEAO 1, launched August 12, 1977 aboard an Atlas rocket with a Centaur upper stage, operated until 9 January 1979. During that time, it scanned the X-ray sky almost three times

<span class="mw-page-title-main">Einstein Observatory</span> X-ray telescope space observatory

Einstein Observatory (HEAO-2) was the first fully imaging X-ray telescope put into space and the second of NASA's three High Energy Astrophysical Observatories. Named HEAO B before launch, the observatory's name was changed to honor Albert Einstein upon its successfully attaining orbit.

Kosmos 111, E-6S No.204, was the first Soviet attempt to orbit a spacecraft around the Moon. The design was similar to the future successful Luna 10 spacecraft. Kosmos 111 was produced in less than a month, one of two spacecraft developed from the E-6 lander bus in a crash program to upstage America's Lunar Orbiter series and to commemorate the 23rd Congress of the Communist Party of the Soviet Union (CPSU), held in March 1966.

<span class="mw-page-title-main">Granat</span> 1989 Soviet space observatory

The International Astrophysical Observatory "GRANAT", was a Soviet space observatory developed in collaboration with France, Denmark and Bulgaria. It was launched on 1 December 1989 aboard a Proton rocket and placed in a highly eccentric four-day orbit, of which three were devoted to observations. It operated for almost nine years.

<span class="mw-page-title-main">High Energy Astronomy Observatory 3</span>

The last of NASA's three High Energy Astronomy Observatories, HEAO 3 was launched 20 September 1979 on an Atlas-Centaur launch vehicle, into a nearly circular, 43.6 degree inclination low Earth orbit with an initial perigeum of 486.4 km. The normal operating mode was a continuous celestial scan, spinning approximately once every 20 min about the spacecraft z-axis, which was nominally pointed at the Sun. Total mass of the observatory at launch was 2,660.0 kilograms (5,864.3 lb).

<span class="mw-page-title-main">Small Astronomy Satellite 2</span>

The Small Astronomy Satellite 2, also known also as SAS-2, SAS B or Explorer 48, was a NASA gamma ray telescope. It was launched on 15 November 1972 into the low Earth orbit with a periapsis of 443 km and an apoapsis of 632 km. It completed its observations on 8 June 1973.

<span class="mw-page-title-main">Astronomical Netherlands Satellite</span> Space-based X-ray and ultraviolet telescope

The Astronomical Netherlands Satellite was a space-based X-ray and ultraviolet telescope. It was launched into Earth orbit on 30 August 1974 at 14:07:39 UTC in a Scout rocket from Vandenberg Air Force Base, United States. The mission ran for 20 months until June 1976, and was jointly funded by the Netherlands Institute for Space Research (NIVR) and NASA. ANS was the first Dutch satellite, and the Main Belt asteroid 9996 ANS was named after it. ANS reentered Earth's atmosphere on June 14, 1977.

<span class="mw-page-title-main">Small Astronomy Satellite 3</span>

The Small Astronomy Satellite 3 was a NASA X-ray astronomy space telescope. It functioned from May 7, 1975 to April 1979. It covered the X-ray range with four experiments on board. The satellite, built by the Johns Hopkins University Applied Physics Laboratory (APL), was proposed and operated by MIT's Center for Space Research (CSR). It was launched on a Scout vehicle from the Italian San Marco launch platform near Mombasa, Kenya, into a low-Earth, nearly equatorial orbit. It was also known as Explorer 53, as part of NASA's Explorer program.

<span class="mw-page-title-main">OSO 7</span>

OSO 7 or Orbiting Solar Observatory 7, before launch known as OSO H is the seventh in the series of American Orbiting Solar Observatory satellites launched by NASA between 1962 and 1975. OSO 7 was launched from Cape Kennedy on 29 September 1971 by a Delta N rocket into a 33.1° inclination, low-Earth orbit, and re-entered the Earth's atmosphere on 9 July 1974. It was built by the Ball Brothers Research Corporation (BBRC), now known as Ball Aerospace, in Boulder Colorado.

<span class="mw-page-title-main">Gamma-ray astronomy</span> Observational astronomy performed with gamma rays

Gamma-ray astronomy is the astronomical observation of gamma rays, the most energetic form of electromagnetic radiation, with photon energies above 100 keV. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

<span class="mw-page-title-main">OSO 3</span>

OSO 3, or Third Orbiting Solar Observatory was launched on March 8, 1967, into a nearly circular orbit of mean altitude 550 km, inclined at 33° to the equatorial plane. Its on-board tape recorder failed on June 28, 1968, allowing only the acquisition of sparse real-time data during station passes thereafter; the last data were received on November 10, 1969. OSO 3 reentered the Earth's atmosphere and burned up on April 4, 1982.

<span class="mw-page-title-main">X-ray astronomy satellite</span> Satellite involved in X-ray astronomy

An X-ray astronomy satellite studies X-ray emissions from celestial objects, as part of a branch of space science known as X-ray astronomy. Satellites are needed because X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites.

<span class="mw-page-title-main">X-ray astronomy detector</span> X-ray detectors used in X-ray astronomy

X-ray astronomy detectors are instruments that detect X-rays for use in the study of X-ray astronomy.

<span class="mw-page-title-main">History of X-ray astronomy</span>

The history of X-ray astronomy begins in the 1920s, with interest in short wave communications for the U.S. Navy. This was soon followed by extensive study of the earth's ionosphere. By 1927, interest in the detection of X-ray and ultraviolet (UV) radiation at high altitudes inspired researchers to launch Goddard's rockets into the upper atmosphere to support theoretical studies and data gathering. The first successful rocket flight equipped with instrumentation able to detect solar ultraviolet radiation occurred in 1946. X-ray solar studies began in 1949. By 1973 a solar instrument package orbited on Skylab providing significant solar data.

<span class="mw-page-title-main">TD-1A</span>

TD-1A, or Thor-Delta 1A, was a European astrophysical research satellite which was launched in 1972. Operated by the European Space Research Organisation, TD-1A made astronomical surveys primarily in the ultraviolet, but also using x-ray and gamma ray detectors.

<span class="mw-page-title-main">Explorer 43</span> NASA satellite of the Explorer program

Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.

References

  1. "NASA - NSSDCA - Spacecraft - Trajectory Details". nssdc.gsfc.nasa.gov. Retrieved 2 May 2018.
  2. 1 2 HEASARC "The Uhuru Satellite"
  3. Forman et al. (1978), ApJS, 38, 357. HEASARC archive for Uhuru
  4. 4U catalog browse version.