Proportional counter

Last updated

The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is proportional to the radiation energy absorbed by the detector due to an ionizing event; hence the detector's name. It is widely used where energy levels of incident radiation must be known, such as in the discrimination between alpha and beta particles, or accurate measurement of X-ray radiation dose.

Contents

Plot of variation of ion pair current against applied voltage for a wire cylinder gaseous radiation detector. Detector regions.gif
Plot of variation of ion pair current against applied voltage for a wire cylinder gaseous radiation detector.

A proportional counter uses a combination of the mechanisms of a Geiger–Müller tube and an ionization chamber, and operates in an intermediate voltage region between these. The accompanying plot shows the proportional counter operating voltage region for a co-axial cylinder arrangement.

Operation

The generation of discrete Townsend avalanches in a proportional counter. Proportional counter avalanches.jpg
The generation of discrete Townsend avalanches in a proportional counter.
Plot of electric field strength at the anode, showing the boundary of avalanche region. Gas counter anode electric field.gif
Plot of electric field strength at the anode, showing the boundary of avalanche region.

In a proportional counter the fill gas of the chamber is an inert gas which is ionized by incident radiation, and a quench gas to ensure each pulse discharge terminates; a common mixture is 90% argon, 10% methane, known as P-10. An ionizing particle entering the gas collides with an atom of the inert gas and ionizes it to produce an electron and a positively charged ion, commonly known as an "ion pair". As the ionizing particle travels through the chamber it leaves a trail of ion pairs along its trajectory, the number of which is proportional to the energy of the particle if it is fully stopped within the gas. Typically a 1 MeV stopped particle will create about 30,000 ion pairs. [1]

The chamber geometry and the applied voltage is such that in most of the chamber the electric field strength is low and the chamber acts as an ion chamber. However, the field is strong enough to prevent re-combination of the ion pairs and causes positive ions to drift towards the cathode and electrons towards the anode. This is the "ion drift" region. In the immediate vicinity of the anode wire, the field strength becomes large enough to produce Townsend avalanches. This avalanche region occurs only fractions of a millimeter from the anode wire, which itself is of a very small diameter. The purpose of this is to use the multiplication effect of the avalanche produced by each ion pair. This is the "avalanche" region.

A key design goal is that each original ionizing event due to incident radiation produces only one avalanche. This is to ensure proportionality between the number of original events and the total ion current. For this reason, the applied voltage, the geometry of the chamber and the diameter of the anode wire are critical to ensure proportional operation. If avalanches start to self-multiply due to UV photons as they do in a Geiger–Muller tube, then the counter enters a region of "limited proportionality" until at a higher applied voltage the Geiger discharge mechanism occurs with complete ionization of the gas enveloping the anode wire and consequent loss of particle energy information.

Therefore, it can be said that the proportional counter has the key design feature of two distinct ionization regions:

  1. Ion drift region: in the outer volume of the chamber – the creation of number ion pairs proportional to incident radiation energy.
  2. Avalanche region: in the immediate vicinity of the anode – charge amplification of ion pair currents, while maintaining localized avalanches.

The process of charge amplification greatly improves the signal-to-noise ratio of the detector and reduces the subsequent electronic amplification required.

In summary, the proportional counter is an ingenious combination of two ionization mechanisms in one chamber which finds wide practical use.

Gas mixtures

Usually the detector is filled with a noble gas; they have the lowest ionization voltages and do not degrade chemically. Typically neon, argon, krypton or xenon are used. Low-energy x-rays are best detected with lighter nuclei (neon), which are less sensitive to higher-energy photons. Krypton or xenon are chosen when for higher-energy x-rays or for higher desired efficiency.

Often the main gas is mixed with a quenching additive. A popular mixture is P10 (10% methane, 90% argon).

Typical working pressure is 1 atmosphere (about 100 kPa). [2]

Signal amplification by multiplication

In the case of a cylindrical proportional counter the multiplication, M, of the signal caused by an avalanche can be modeled as follows:

Where a is the anode wire radius, b is the radius of the counter, p is the pressure of the gas, and V is the operating voltage. K is a property of the gas used and relates the energy needed to cause an avalanche to the pressure of the gas. The final term gives the change in voltage caused by an avalanche.

Applications

Spectroscopy

The proportionality between the energy of the charged particle traveling through the chamber and the total charge created makes proportional counters useful for charged particle spectroscopy. By measuring the total charge (time integral of the electric current) between the electrodes, we can determine the particle's kinetic energy because the number of ion pairs created by the incident ionizing charged particle is proportional to its energy. The energy resolution of a proportional counter, however, is limited because both the initial ionization event and the subsequent 'multiplication' event are subject to statistical fluctuations characterized by a standard deviation equal to the square root of the average number formed. However, in practice these are not as great as would be predicted due to the effect of the empirical Fano factor which reduces these fluctuations. [1] In the case of argon, this is experimentally about 0.2.

Photon detection

Proportional counters are also useful for detection of high energy photons, such as gamma-rays, provided these can penetrate the entrance window. They are also used for the detection of X-rays to below 1 keV energy levels, using thin-walled tubes operating at or around atmospheric pressure.

Radioactive contamination detection

Proportional counters in the form of large area planar detectors are used extensively to check for radioactive contamination on personnel, flat surfaces, tools, and items of clothing. This is normally in the form of installed instrumentation because of the difficulties of providing portable gas supplies for hand-held devices. They are constructed with a large area detection window made from such as metalized mylar which forms one wall of the detection chamber and is part of the cathode. The anode wire is routed in a convoluted manner within the detector chamber to optimize the detection efficiency. They are normally used to detect alpha and beta particles, and can enable discrimination between them by providing a pulse output proportional to the energy deposited in the chamber by each particle. They have a high efficiency for beta, but lower for alpha. The efficiency reduction for alpha is due to the attenuation effect of the entry window, though distance from the surface being checked also has a significant effect, and ideally a source of alpha radiation should be less than 10mm from the detector due to attenuation in air.

These chambers operate at very slight positive pressure above ambient atmospheric pressure. The gas can be sealed in the chamber, or can be changed continuously, in which case they are known as "gas-flow proportional counters". Gas flow types have the advantage that they will tolerate small holes in the mylar screen which can occur in use, but they do require a continuous gas supply.

Guidance on application use

In the United Kingdom the Health and Safety Executive (HSE) has issued a user guidance note on selecting the correct radiation measurement instrument for the application concerned. [3] This covers all radiation instrument technologies and is a useful comparative guide to the use of proportional counters.

See also

Related Research Articles

<span class="mw-page-title-main">Geiger counter</span> Instrument used for measuring ionizing radiation

A Geiger counter is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry.

<span class="mw-page-title-main">X-ray fluorescence</span> Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

<span class="mw-page-title-main">Geiger–Müller tube</span> Part of a Geiger counter

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

<span class="mw-page-title-main">Scintillation counter</span> Instrument for measuring ionizing radiation

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Detectors can measure the particle energy and other attributes such as momentum, spin, charge, particle type, in addition to merely registering the presence of the particle.

<span class="mw-page-title-main">Gas-filled tube</span> Assembly of electrodes at either end of an insulated tube filled with gas

A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

<span class="mw-page-title-main">Paschen's law</span> Physical law about electrical discharge in gases

Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. It is named after Friedrich Paschen who discovered it empirically in 1889.

A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor to measure the effect of incident charged particles or photons.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Time projection chamber</span>

In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory or interaction.

The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionally, the term "ionization chamber" refers exclusively to those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It uses the discrete charges created by each interaction between the incident radiation and the gas to produce an output in the form of a small direct current. This means individual ionising events cannot be measured, so the energy of different types of radiation cannot be differentiated, but it gives a very good measurement of overall ionising effect.

<span class="mw-page-title-main">Gaseous ionization detector</span> Radiation detector

Gaseous ionization detectors are radiation detection instruments used in particle physics to detect the presence of ionizing particles, and in radiation protection applications to measure ionizing radiation.

An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them. This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an electrically conductive plasma.

<span class="mw-page-title-main">Townsend discharge</span> Gas ionization process

In electromagnetism, the Townsend discharge or Townsend avalanche is an ionisation process for gases where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits significantly increased electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.

A gas electron multiplier (GEM) is a type of gaseous ionization detector used in nuclear and particle physics and radiation detection.

The gaseous detection device (GDD) is a method and apparatus for the detection of signals in the gaseous environment of an environmental scanning electron microscope (ESEM) and all scanned beam type of instruments that allow a minimum gas pressure for the detector to operate.

<span class="mw-page-title-main">X-ray detector</span> Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

Micropattern gaseous detectors (MPGDs) are a group of gaseous ionization detectors consisting of microelectronic structures with sub-millimeter distances between anode and cathode electrodes. When interacting with the gaseous medium of the detector, particles of ionizing radiation create electrons and ions that are subsequently drifted apart by means of an electric field. The accelerated electrons create further electron-ion pairs in an avalanche process in regions with a strong electrostatic field. The various types of MPGDs differ in the way this strong field region is created. Examples of MPGDs include the microstrip gas chamber, the gas electron multiplier and the Micromegas detector.

References

  1. 1 2 Glenn F Knoll. Radiation Detection and Measurement, third edition 2000. John Wiley and sons, ISBN   0-471-07338-5.
  2. "Gamma and X-Ray Detection Introduction" (PDF). www.canberra.com. Archived from the original (PDF) on 2014-05-14. Retrieved 2023-11-06.
  3. "Selection, use and maintenance of portable monitoring instruments" (PDF). www.hse.gov.uk. Archived from the original (PDF) on 2003-04-08. Retrieved 2023-11-06.

Patents