Scintillation counter

Last updated
Schematic showing incident high energy photon hitting a scintillating crystal, triggering the release of low-energy photons which are then converted into photoelectrons and multiplied in the photomultiplier PhotoMultiplierTubeAndScintillator.svg
Schematic showing incident high energy photon hitting a scintillating crystal, triggering the release of low-energy photons which are then converted into photoelectrons and multiplied in the photomultiplier

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

Contents

It consists of a scintillator which generates photons in response to incident radiation, a sensitive photodetector (usually a photomultiplier tube (PMT), a charge-coupled device (CCD) camera, or a photodiode), which converts the light to an electrical signal and electronics to process this signal.

Scintillation counters are widely used in radiation protection, assay of radioactive materials and physics research because they can be made inexpensively yet with good quantum efficiency, and can measure both the intensity and the energy of incident radiation.

History

The first electronic scintillation counter was invented in 1944 by Sir Samuel Curran [1] [2] whilst he was working on the Manhattan Project at the University of California at Berkeley. There was a requirement to measure the radiation from small quantities of uranium, and his innovation was to use one of the newly available highly sensitive photomultiplier tubes made by the Radio Corporation of America to accurately count the flashes of light from a scintillator subjected to radiation.

This built upon the work of earlier researchers such as Antoine Henri Becquerel, who discovered radioactivity whilst working on the phosphorescence of uranium salts in 1896. Previously, scintillation events had to be laboriously detected by eye, using a spinthariscope (a simple microscope) to observe light flashes in the scintillator. The first commercial liquid scintillation counter was made by Lyle E. Packard and sold to Argonne Cancer Research Hospital at the University of Chicago in 1953. The production model was designed especially for tritium and carbon-14 which were used in metabolic studies in vivo and in vitro . [3]

Operation

Apparatus with a scintillating crystal, photomultiplier, and data acquisition components. Scintillation Counter Schematic.jpg
Apparatus with a scintillating crystal, photomultiplier, and data acquisition components.
animation of radiation scintillation counter using a photomultiplier tube. Scintillation Detector.gif
animation of radiation scintillation counter using a photomultiplier tube.

When an ionizing particle passes into the scintillator material, atoms are excited along a track. For charged particles the track is the path of the particle itself. For gamma rays (uncharged), their energy is converted to an energetic electron via either the photoelectric effect, Compton scattering or pair production.

The chemistry of atomic de-excitation in the scintillator produces a multitude of low-energy photons, typically near the blue end of the visible spectrum. The quantity is proportional to the energy deposited by the ionizing particle. These can be directed to the photocathode of a photomultiplier tube which emits at most one electron for each arriving photon due to the photoelectric effect. This group of primary electrons is electrostatically accelerated and focused by an electrical potential so that they strike the first dynode of the tube. The impact of a single electron on the dynode releases a number of secondary electrons which are in turn accelerated to strike the second dynode. Each subsequent dynode impact releases further electrons, and so there is a current amplifying effect at each dynode stage. Each stage is at a higher potential than the previous to provide the accelerating field.

The resultant output signal at the anode is a measurable pulse for each group of photons from an original ionizing event in the scintillator that arrived at the photocathode and carries information about the energy of the original incident radiation. When it is fed to a charge amplifier which integrates the energy information, an output pulse is obtained which is proportional to the energy of the particle exciting the scintillator.

The number of such pulses per unit time also gives information about the intensity of the radiation. In some applications individual pulses are not counted, but rather only the average current at the anode is used as a measure of radiation intensity.

The scintillator must be shielded from all ambient light so that external photons do not swamp the ionization events caused by incident radiation. To achieve this a thin opaque foil, such as aluminized mylar, is often used, though it must have a low enough mass to minimize undue attenuation of the incident radiation being measured.

The article on the photomultiplier tube carries a detailed description of the tube's operation.

Detection materials

The scintillator consists of a transparent crystal, usually a phosphor, plastic (usually containing anthracene) or organic liquid (see liquid scintillation counting) that fluoresces when struck by ionizing radiation.

Cesium iodide (CsI) in crystalline form is used as the scintillator for the detection of protons and alpha particles. Sodium iodide (NaI) containing a small amount of thallium is used as a scintillator for the detection of gamma waves and zinc sulfide (ZnS) is widely used as a detector of alpha particles. Zinc sulfide is the material Rutherford used to perform his scattering experiment. Lithium iodide (LiI) is used in neutron detectors.

Detector efficiencies

Gamma

The quantum efficiency of a gamma-ray detector (per unit volume) depends upon the density of electrons in the detector, and certain scintillating materials, such as sodium iodide and bismuth germanate, achieve high electron densities as a result of the high atomic numbers of some of the elements of which they are composed. However, detectors based on semiconductors, notably hyperpure germanium, have better intrinsic energy resolution than scintillators, and are preferred where feasible for gamma-ray spectrometry.

Neutron

In the case of neutron detectors, high efficiency is gained through the use of scintillating materials rich in hydrogen that scatter neutrons efficiently. Liquid scintillation counters are an efficient and practical means of quantifying beta radiation.

Applications

Scintillation probe being used to measure surface radioactive contamination. The probe is held as close to the object as practicable NNSA-NSO-1445.jpg
Scintillation probe being used to measure surface radioactive contamination. The probe is held as close to the object as practicable

Scintillation counters are used to measure radiation in a variety of applications including hand held radiation survey meters, personnel and environmental monitoring for radioactive contamination, medical imaging, radiometric assay, nuclear security and nuclear plant safety.

Several products have been introduced in the market utilising scintillation counters for detection of potentially dangerous gamma-emitting materials during transport. These include scintillation counters designed for freight terminals, border security, ports, weigh bridge applications, scrap metal yards and contamination monitoring of nuclear waste. There are variants of scintillation counters mounted on pick-up trucks and helicopters for rapid response in case of a security situation due to dirty bombs or radioactive waste. [4] [ failed verification ] [5] [ failed verification ] Hand-held units are also commonly used. [6]

Selection guidance for handheld use

In the United Kingdom, the Health and Safety Executive, or HSE, has issued a user guidance note on selecting the correct radiation measurement instrument for the application concerned. This covers all radiation instrument technologies, and is a useful comparative guide to the use of scintillation detectors. [7]

Radiation protection

Alpha and beta contamination

Hand-held large area alpha scintillation probe under calibration with a plate source in a bench calibration jig. US Navy 070208-N-9132D-002 Electronics Technician 2nd Class Shea Thompson tests an Alpha Particle Dection Probe.jpg
Hand-held large area alpha scintillation probe under calibration with a plate source in a bench calibration jig.
Hand-held scintillation counter reading ambient gamma dose. The position of the internal detector is shown by the cross Minamisoma Radiation 2011-11.jpg
Hand-held scintillation counter reading ambient gamma dose. The position of the internal detector is shown by the cross

Radioactive contamination monitors, for area or personal surveys require a large detection area to ensure efficient and rapid coverage of monitored surfaces. For this a thin scintillator with a large area window and an integrated photomultiplier tube is ideally suited. They find wide application in the field of radioactive contamination monitoring of personnel and the environment. Detectors are designed to have one or two scintillation materials, depending on the application. "Single phosphor" detectors are used for either alpha or beta, and "Dual phosphor" detectors are used to detect both. [8]

A scintillator such as zinc sulphide is used for alpha particle detection, whilst plastic scintillators are used for beta detection. The resultant scintillation energies can be discriminated so that alpha and beta counts can be measured separately with the same detector, [8] This technique is used in both hand-held and fixed monitoring equipment, and such instruments are relatively inexpensive compared with the gas proportional detector.

Gamma

Scintillation materials are used for ambient gamma dose measurement, though a different construction is used to detect contamination, as no thin window is required.

As a spectrometer

Measurement of gamma ray spectrum with a scintillation counter. A high voltage drives the counter which feeds signals to the Multichannel Analyser (MCA) and computer. Scintillation counter as a spectrometer.jpg
Measurement of gamma ray spectrum with a scintillation counter. A high voltage drives the counter which feeds signals to the Multichannel Analyser (MCA) and computer.

Scintillators often convert a single photon of high energy radiation into high number of lower-energy photons, where the number of photons per megaelectronvolt of input energy is fairly constant. By measuring the intensity of the flash (the number of the photons produced by the x-ray or gamma photon) it is therefore possible to discern the original photon's energy.

The spectrometer consists of a suitable scintillator crystal, a photomultiplier tube, and a circuit for measuring the height of the pulses produced by the photomultiplier. The pulses are counted and sorted by their height, producing a x-y plot of scintillator flash brightness vs number of the flashes, which approximates the energy spectrum of the incident radiation, with some additional artifacts. A monochromatic gamma radiation produces a photopeak at its energy. The detector also shows response at the lower energies, caused by Compton scattering, two smaller escape peaks at energies 0.511 and 1.022 MeV below the photopeak for the creation of electron-positron pairs when one or both annihilation photons escape, and a backscatter peak. Higher energies can be measured when two or more photons strike the detector almost simultaneously (pile-up, within the time resolution of the data acquisition chain), appearing as sum peaks with energies up to the value of two or more photopeaks added [8]

See also

Related Research Articles

<span class="mw-page-title-main">Geiger counter</span> Instrument used for measuring ionizing radiation

A Geiger counter is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry.

<span class="mw-page-title-main">X-ray fluorescence</span> Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

<span class="mw-page-title-main">Geiger–Müller tube</span> Part of a Geiger counter

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

<span class="mw-page-title-main">Photomultiplier tube</span> Fast, high sensitivty, low noise electronic photon detector

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 108 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

<span class="mw-page-title-main">Scintillator</span> Material which glows when excited by ionizing radiation

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

Liquid scintillation counting is the measurement of radioactive activity of a sample material which uses the technique of mixing the active material with a liquid scintillator, and counting the resultant photon emissions. The purpose is to allow more efficient counting due to the intimate contact of the activity with the scintillator. It is generally used for alpha particle or beta particle detection.

A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor to measure the effect of incident charged particles or photons.

<span class="mw-page-title-main">Gamma camera</span> Camera to record gamma radiation

A gamma camera (γ-camera), also called a scintillation camera or Anger camera, is a device used to image gamma radiation emitting radioisotopes, a technique known as scintigraphy. The applications of scintigraphy include early drug development and nuclear medical imaging to view and analyse images of the human body or the distribution of medically injected, inhaled, or ingested radionuclides emitting gamma rays.

<span class="mw-page-title-main">Proportional counter</span> Gaseous ionization detector

The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is proportional to the radiation energy absorbed by the detector due to an ionizing event; hence the detector's name. It is widely used where energy levels of incident radiation must be known, such as in the discrimination between alpha and beta particles, or accurate measurement of X-ray radiation dose.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionally, the term "ionization chamber" refers exclusively to those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It uses the discrete charges created by each interaction between the incident radiation and the gas to produce an output in the form of a small direct current. This means individual ionising events cannot be measured, so the energy of different types of radiation cannot be differentiated, but it gives a very good measurement of overall ionising effect.

<span class="mw-page-title-main">Gamma spectroscopy</span> Quantitative study of the energy spectra of gamma-ray sources

Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics. Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.

In the measurement of ionising radiation the counting efficiency is the ratio between the number of particles or photons counted with a radiation counter and the number of particles or photons of the same type and energy emitted by the radiation source.

<span class="mw-page-title-main">Gaseous ionization detector</span> Radiation detector

Gaseous ionization detectors are radiation detection instruments used in particle physics to detect the presence of ionizing particles, and in radiation protection applications to measure ionizing radiation.

<span class="mw-page-title-main">Neutron detection</span>

Neutron detection is the effective detection of neutrons entering a well-positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used and to the electronics used in the detection setup. Further, the hardware setup also defines key experimental parameters, such as source-detector distance, solid angle and detector shielding. Detection software consists of analysis tools that perform tasks such as graphical analysis to measure the number and energies of neutrons striking the detector.

<span class="mw-page-title-main">DEAP</span> Dark matter search experiment

DEAP is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse-shape of argon. A first-generation detector (DEAP-1) with a 7 kg target mass was operated at Queen's University to test the performance of pulse-shape discrimination at low recoil energies in liquid argon. DEAP-1 was then moved to SNOLAB, 2 km below Earth's surface, in October 2007 and collected data into 2011.

In health physics, whole-body counting refers to the measurement of radioactivity within the human body. The technique is primarily applicable to radioactive material that emits gamma rays. Alpha particle decays can also be detected indirectly by their coincident gamma radiation. In certain circumstances, beta emitters can be measured, but with degraded sensitivity. The instrument used is normally referred to as a whole body counter.

Nuclear MASINT is one of the six major subdisciplines generally accepted to make up Measurement and Signature Intelligence (MASINT), which covers measurement and characterization of information derived from nuclear radiation and other physical phenomena associated with nuclear weapons, reactors, processes, materials, devices, and facilities. Nuclear monitoring can be done remotely or during onsite inspections of nuclear facilities. Data exploitation results in characterization of nuclear weapons, reactors, and materials. A number of systems detect and monitor the world for nuclear explosions, as well as nuclear materials production.

<span class="mw-page-title-main">Survey meter</span>

Survey meters in radiation protection are hand-held ionising radiation measurement instruments used to check such as personnel, equipment and the environment for radioactive contamination and ambient radiation. The hand-held survey meter is probably the most familiar radiation measuring device owing to its wide and visible use.

<span class="mw-page-title-main">Radionuclide identification device</span>

A radionuclide identification device is a small, lightweight, portable gamma-ray spectrometer used for the detection and identification of radioactive substances. As RIIDs are portable, they are suitable for medical and industrial applications, fieldwork, geological surveys, first-line responders in Homeland Security, and Environmental Monitoring and Radiological Mapping along with other industries that necessitate the identification of radioactive substances..

References

  1. Curran, Samuel C. (1949). Counting tubes, theory and applications. Academic Press (New York). p. 235. OL   17868379M.
  2. Oxford Dictionary of National Biography
  3. Joerges, Bernward (2001). Instrumentation Between Science, State and Industry (Sociology of the Sciences Yearbook, 22). Kluwer Academic Publishers. p. 270. ISBN   978-1402002427
  4. "Automatic Radiation Detection and Monitoring System". Archived from the original on 2014-08-14.
  5. "Automatic Radiation Detection Vehicles". Archived from the original on 2014-08-14.
  6. Portable MicroR Survey Meters Archived 2009-12-07 at the Wayback Machine
  7. "Selection, use and maintenance of portable monitoring instruments" (PDF). Health & Safety Executive. 2001. Archived from the original on 6 October 2012. Retrieved 6 October 2012.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  8. 1 2 3 Glenn F Knoll. Radiation Detection and Measurement, third edition 2000. John Wiley and sons, ISBN   0-471-07338-5