Electron excitation

Last updated
A schematic of electron excitation, showing excitation by photon (left) and by particle collision (right) Electron excitation.png
A schematic of electron excitation, showing excitation by photon (left) and by particle collision (right)

Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy [1] or by collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. [2] Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4] ). This is accompanied by the emission of a photon (radiative relaxation/spontaneous emission) or by a transfer of energy to another particle. The energy released is equal to the difference in energy levels between the electron energy states. [5] [6]

Contents

Excited states in nuclear, atomic, and molecule systems have distinct energy values, allowing external energy to be absorbed in the appropriate proportions. [6]

In general, the excitation of electrons in atoms strongly varies from excitation in solids, due to the different nature of the electronic levels and the structural properties of some solids. [7] The electronic excitation (or deexcitation) can take place by several processes such as:

There are several rules that dictate the transition of an electron to an excited state, known as selection rules. First, as previously noted, the electron must absorb an amount of energy equivalent to the energy difference between the electron's current energy level and an unoccupied, higher energy level in order to be promoted to that energy level. The next rule follows from the Frank-Condon Principle, which states that the absorption of a photon by an electron and the subsequent jump in energy levels is near-instantaneous. The atomic nucleus with which the electron is associated cannot adjust to the change in electron position on the same time scale as the electron (because nuclei are much heavier), and thus the nucleus may be brought into a vibrational state in response to the electron transition. Then, the rule is that the amount of energy absorbed by an electron may allow for the electron to be promoted from a vibrational and electronic ground state to a vibrational and electronic excited state. A third rule is the Laporte Rule, which necessitates that the two energy states between which an electron transitions must have different symmetry. A fourth rule is that when an electron undergoes a transition, the spin state of the molecule/atom that contains the electron must be conserved. [8]

Under some circumstances, certain selection rules may be broken and excited electrons may make "forbidden" transitions. The spectral lines associated with such transitions are known as forbidden lines.

Electron excitation in solids

Ground state preparation

The energy and momentum of electrons in solids can be described by introducing Bloch waves into the Schrödinger equation with applying periodic boundary conditions. Solving this eigenvalue equation, one obtains sets of solutions that are describing bands of energies that are allowed to the electrons: the electronic band structure. The latter page contains a summary of the techniques that are nowadays available for modeling the properties of solid crystals at equilibrium, i.e., when they are not illuminated by light.

Electron excitation by light: polariton

The behavior of electrons excited by photons can be described by the quasi-particle named "polariton". [9] A number of methods exist to describe these, both using classical and quantum electrodynamics. One of the methods is to use the concept of dressed particle.

See also

Related Research Articles

Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned with the way in which electrons are arranged around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term atom includes ions.

In physics, specifically statistical mechanics, a population inversion occurs while a system exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy states. It is called an "inversion" because in many familiar and commonly encountered physical systems, this is not possible. This concept is of fundamental importance in laser science because the production of a population inversion is a necessary step in the workings of a standard laser.

<span class="mw-page-title-main">Spectroscopy</span> Study involving matter and electromagnetic radiation

Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.

Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.

<span class="mw-page-title-main">Energy level</span> Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules, electrons, positrons, protons, antiprotons and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

<span class="mw-page-title-main">Emission spectrum</span> Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state. The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

In physics, atomic spectroscopy is the study of the electromagnetic radiation absorbed and emitted by atoms. Since unique elements have unique emission spectra, atomic spectroscopy is applied for determination of elemental compositions. It can be divided by atomization source or by the type of spectroscopy used. In the latter case, the main division is between optical and mass spectrometry. Mass spectrometry generally gives significantly better analytical performance, but is also significantly more complex. This complexity translates into higher purchase costs, higher operational costs, more operator training, and a greater number of components that can potentially fail. Because optical spectroscopy is often less expensive and has performance adequate for many tasks, it is far more common. Atomic absorption spectrometers are one of the most commonly sold and used analytical devices.

<span class="mw-page-title-main">Scintillator</span> Material which glows when excited by ionizing radiation

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

<span class="mw-page-title-main">Excited state</span> Quantum states with more energy than the lowest possible amount

In quantum mechanics, an excited state of a system is any quantum state of the system that has a higher energy than the ground state. Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation.

<span class="mw-page-title-main">Internal conversion</span> Process where an excited nucleus ejects an orbital electron from its atom

Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion, a high-energy electron is emitted from the excited atom, but not from the nucleus. For this reason, the high-speed electrons resulting from internal conversion are not called beta particles, since the latter come from beta decay, where they are newly created in the nuclear decay process.

In condensed matter physics, scintillation is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons or energetic particles. See scintillator and scintillation counter for practical applications.

<span class="mw-page-title-main">Glow discharge</span> Plasma formed by passage of current through gas

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

<span class="mw-page-title-main">Franck–Condon principle</span> Quantum chemistry rule regarding vibronic transitions

The Franck-Condon Principle describes the intensities of vibronic transitions, or the absorption or emission of a photon. It states that when a molecule is undergoing an electronic transition, such as ionization, the nuclear configuration of the molecule experiences no significant change.

In spectroscopy, a forbidden mechanism is a spectral line associated with absorption or emission of photons by atomic nuclei, atoms, or molecules which undergo a transition that is not allowed by a particular selection rule but is allowed if the approximation associated with that rule is not made. For example, in a situation where, according to usual approximations, the process cannot happen, but at a higher level of approximation the process is allowed but at a low rate.

Rydberg ionization spectroscopy is a spectroscopy technique in which multiple photons are absorbed by an atom causing the removal of an electron to form an ion.

<span class="mw-page-title-main">Gamma ray</span> Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, also known as gamma radiation (symbol
γ
), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz) and wavelengths less than 10 picometers (1×10−11 m), gamma ray photons have the highest photon energy of any form of electromagnetic radiation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

<span class="mw-page-title-main">Resonance ionization</span> Process to excite an atom beyond its ionization potential to form an ion

Resonance ionization is a process in optical physics used to excite a specific atom beyond its ionization potential to form an ion using a beam of photons irradiated from a pulsed laser light. In resonance ionization, the absorption or emission properties of the emitted photons are not considered, rather only the resulting excited ions are mass-selected, detected and measured. Depending on the laser light source used, one electron can be removed from each atom so that resonance ionization produces an efficient selectivity in two ways: elemental selectivity in ionization and isotopic selectivity in measurement.

A quantum jump is the abrupt transition of a quantum system from one quantum state to another, from one energy level to another. When the system absorbs energy, there is a transition to a higher energy level (excitation); when the system loses energy, there is a transition to a lower energy level.

References

  1. "Spectroscopy – Atoms and Light". dept.harpercollege.edu. Retrieved 2022-12-08.
  2. Roche, Patrick (April 26, 2016). "C1: Atomic Processes, Appendix A Collisional excitation and de-excitation coefficients" (PDF). astro.physics.ox.ac.uk/~pfr/C1_TT/Lecture2_AppendixA.pdf. Retrieved December 8, 2022.
  3. Finnis, M. W.; Agnew, P.; Foreman, A. J. E. (1991-07-01). "Thermal excitation of electrons in energetic displacement cascades". Physical Review B. 44 (2): 567–574. Bibcode:1991PhRvB..44..567F. doi:10.1103/PhysRevB.44.567. ISSN   0163-1829. PMID   9999155.
  4. Sakho, Ibrahima. Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions. John Wiley & Sons, 2021.
  5. "PhysicsLAB: Excitation". dev.physicslab.org. Retrieved 2019-04-07.
  6. 1 2 "Excitation | electron transitions, energy levels & spectroscopy | Britannica". www.britannica.com. Retrieved 2024-10-17.
  7. Nozières, Philippe; Pines, David (1958-02-01). "Electron Interaction in Solids. General Formulation". Physical Review. 109 (3): 741–761. Bibcode:1958PhRv..109..741N. doi:10.1103/PhysRev.109.741. ISSN   0031-899X.
  8. "8.2: Rules of Electronic Excitation". Chemistry LibreTexts. 2019-04-20. Retrieved 2022-12-08.
  9. Basov, D. N.; Asenjo-Garcia, Ana; Schuck, P. James; Zhu, Xiaoyang; Rubio, Angel (2020-11-11). "Polariton panorama". Nanophotonics. 10 (1): 549–577. Bibcode:2020Nanop..10..449B. doi: 10.1515/nanoph-2020-0449 . hdl: 21.11116/0000-0007-64E3-8 . ISSN   2192-8614. S2CID   229164559.