Gaseous ionization detector

Last updated
Plot of variation of ion pair current against applied voltage for a wire cylinder gaseous radiation detector. Detector regions.gif
Plot of variation of ion pair current against applied voltage for a wire cylinder gaseous radiation detector.

Gaseous ionization detectors are radiation detection instruments used in particle physics to detect the presence of ionizing particles, and in radiation protection applications to measure ionizing radiation.

Contents

They use the ionising effect of radiation upon a gas-filled sensor. If a particle has enough energy to ionize a gas atom or molecule, the resulting electrons and ions cause a current flow which can be measured.

Gaseous ionisation detectors form an important group of instruments used for radiation detection and measurement. This article gives a quick overview of the principal types, and more detailed information can be found in the articles on each instrument. The accompanying plot shows the variation of ion pair generation with varying applied voltage for constant incident radiation. There are three main practical operating regions, one of which each type utilises.

Types

Families of ionising radiation detectors Detectors summary 3.png
Families of ionising radiation detectors

The three basic types of gaseous ionization detectors are 1) ionization chambers, 2) proportional counters, and 3) Geiger–Müller tubes

All of these have the same basic design of two electrodes separated by air or a special fill gas, but each uses a different method to measure the total number of ion-pairs that are collected. [1] The strength of the electric field between the electrodes and the type and pressure of the fill gas determines the detector's response to ionizing radiation.

Ionization chamber

Schematic diagram of ion chamber, showing drift of ions. Electrons typically drift 1000 times faster than positive ions due to their much smaller mass. Ion chamber operation.gif
Schematic diagram of ion chamber, showing drift of ions. Electrons typically drift 1000 times faster than positive ions due to their much smaller mass.

Ionization chambers operate at a low electric field strength, selected such that no gas multiplication takes place. The ion current is generated by the creation of "ion pairs", consisting of an ion and an electron. The ions drift to the cathode while free electrons drift to the anode under the influence of the electric field. This current is independent of the applied voltage if the device is being operated in the "ion chamber region". Ion chambers are preferred for high radiation dose rates because they have no "dead time"; a phenomenon which affects the accuracy of the Geiger–Müller tube at high dose rates.

The advantages are good uniform response to gamma radiation and accurate overall dose reading, capable of measuring very high radiation rates, sustained high radiation levels do not degrade the fill gas.

The disadvantages are 1) low output requiring sophisticated electrometer circuit and 2) operation and accuracy easily affected by moisture. [3]

Proportional counter

The generation of discrete Townsend avalanches in a proportional counter. Proportional counter avalanches.jpg
The generation of discrete Townsend avalanches in a proportional counter.

Proportional counters operate at a slightly higher voltage, selected such that discrete avalanches are generated. Each ion pair produces a single avalanche so that an output current pulse is generated which is proportional to the energy deposited by the radiation. This is in the "proportional counting" region. [2] The term "gas proportional detector" (GPD) is generally used in radiometric practice, and the property of being able to detect particle energy is particularly useful when using large area flat arrays for alpha and beta particle detection and discrimination, such as in installed personnel monitoring equipment.

The wire chamber is a multi-electrode form of proportional counter used as a research tool.

The advantages are the ability to measure energy of radiation and provide spectrographic information, discriminate between alpha and beta particles, and that large area detectors can be constructed

The disadvantages are that anode wires are delicate and can lose efficiency in gas flow detectors due to deposition, the efficiency and operation affected by ingress of oxygen into fill gas, and measurement windows easily damaged in large area detectors.

Micropattern gaseous detectors (MPGDs) are high granularity gaseous detectors with sub-millimeter distances between the anode and cathode electrodes. The main advantages of these microelectronic structures over traditional wire chambers include: count rate capability, time and position resolution, granularity, stability and radiation hardness. [4] Examples of MPGDs are the microstrip gas chamber, the gas electron multiplier and the micromegas detector.

Geiger–Müller tube

Visualisation of the spread of Townsend avalanches by means of UV photons Spread of avalanches in G-M tube.jpg
Visualisation of the spread of Townsend avalanches by means of UV photons

Geiger–Müller tubes are the primary components of Geiger counters. They operate at an even higher voltage, selected such that each ion pair creates an avalanche, but by the emission of UV photons, multiple avalanches are created which spread along the anode wire, and the adjacent gas volume ionizes from as little as a single ion pair event. This is the "Geiger region" of operation. [2] The current pulses produced by the ionising events are passed to processing electronics which can derive a visual display of count rate or radiation dose, and usually in the case of hand-held instruments, an audio device producing clicks.

The advantages are that they are a cheap and robust detector with a large variety of sizes and applications, large output signal is produced from tube which requires minimal electronic processing for simple counting, and it can measure the overall gamma dose when using an energy compensated tube.

The disadvantages are that it cannot measure the energy of the radiation (no spectrographic information), it will not measure high radiation rates due to dead time, and sustained high radiation levels will degrade fill gas.

Guidance on detector type usage

The UK Health and Safety Executive has issued a guidance note on the correct portable instrument for the application concerned. [5] This covers all radiation instrument technologies and is useful in selecting the correct gaseous ionisation detector technology for a measurement application.

Everyday use

Ionization-type smoke detectors are gaseous ionization detectors in widespread use. A small source of radioactive americium is placed so that it maintains a current between two plates that effectively form an ionisation chamber. If smoke gets between the plates where ionization is taking place, the ionized gas can be neutralized leading to a reduced current. The decrease in current triggers a fire alarm.

See also

Related Research Articles

<span class="mw-page-title-main">Geiger counter</span> Instrument used for measuring ionizing radiation

A Geiger counter is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry.

<span class="mw-page-title-main">Geiger–Müller tube</span> Part of a Geiger counter

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

<span class="mw-page-title-main">Scintillation counter</span> Measurement device

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

<span class="mw-page-title-main">Corona discharge</span> Electrical discharge from a high voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp.

A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor to measure the effect of incident charged particles or photons.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

<span class="mw-page-title-main">Proportional counter</span>

The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is proportional to the radiation energy absorbed by the detector due to an ionizing event; hence the detector's name. It is widely used where energy levels of incident radiation must be known, such as in the discrimination between alpha and beta particles, or accurate measurement of X-ray radiation dose.

A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization.

<span class="mw-page-title-main">Time projection chamber</span>

In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory or interaction.

The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionally, the term "ionization chamber" refers exclusively to those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It uses the discrete charges created by each interaction between the incident radiation and the gas to produce an output in the form of a small direct current. This means individual ionising events cannot be measured, so the energy of different types of radiation cannot be differentiated, but it gives a very good measurement of overall ionising effect.

In the measurement of ionising radiation the counting efficiency is the ratio between the number of particles or photons counted with a radiation counter and the number of particles or photons of the same type and energy emitted by the radiation source.

An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them. This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an electrically conductive plasma.

<span class="mw-page-title-main">Townsend discharge</span> Gas ionization process

In electromagnetism, the Townsend discharge or Townsend avalanche is a ionisation process for gases where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.

<span class="mw-page-title-main">MicroMegas detector</span>

The MicroMegas detector is a gaseous particle detector coming from the development of the wire chamber. Invented in 1992 by Georges Charpak and Ioannis Giomataris, the Micromegas detectors are mainly used in experimental physics, in particular in particle physics, nuclear physics and astrophysics for the detection of ionising particles.

A gas electron multiplier (GEM) is a type of gaseous ionization detector used in nuclear and particle physics and radiation detection.

<span class="mw-page-title-main">Ion</span> Particle, atom or molecule with a net electrical charge

An ion is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons.

The gaseous detection device (GDD) is a method and apparatus for the detection of signals in the gaseous environment of an environmental scanning electron microscope (ESEM) and all scanned beam type of instruments that allow a minimum gas pressure for the detector to operate.

Radioanalytical chemistry focuses on the analysis of sample for their radionuclide content. Various methods are employed to purify and identify the radioelement of interest through chemical methods and sample measurement techniques.

<span class="mw-page-title-main">X-ray detector</span> Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

Micropattern gaseous detectors (MPGDs) are a group of gaseous ionization detectors consisting of microelectronic structures with sub-millimeter distances between anode and cathode electrodes. When interacting with the gaseous medium of the detector, particles of ionizing radiation create electrons and ions that are subsequently drifted apart by means of an electric field. The accelerated electrons create further electron-ion pairs in an avalanche process in regions with a strong electrostatic field. The various types of MPGDs differ in the way this strong field region is created. Examples of MPGDs include the microstrip gas chamber, the gas electron multiplier and the Micromegas detector.

References

  1. McGregor, Douglas S. "Chapter 8 - Detection and Measurement of Radiation." Fundamentals of Nuclear Science and Engineering, Second Edition. By J. Kenneth Shultis and Richard E. Faw. 2nd ed. CRC, 2007. 202-222. Print.
  2. 1 2 3 Glenn F Knoll, Radiation detection and measurement, John Wiley and son, 2000. ISBN   0-471-07338-5
  3. Ahmed, Syed (2007). Physics and Engineering of Radiation Detection. Elsevier. p. 182. Bibcode:2007perd.book.....A. ISBN   978-0-12-045581-2.
  4. Pinto, S.D. (2010). "Micropattern gas detector technologies and applications the work of the RD51 collaboration". IEEE Nuclear Science Symposuim & Medical Imaging Conference. pp. 802–807. arXiv: 1011.5529 . doi:10.1109/NSSMIC.2010.5873870. ISBN   978-1-4244-9106-3. S2CID   23430420.
  5. "Archived copy" (PDF). Archived from the original (PDF) on 2020-03-15. Retrieved 2012-07-26.{{cite web}}: CS1 maint: archived copy as title (link)