Names | DME-A Direct Measurement Explorer-A |
---|---|
Mission type | Earth science |
Operator | NASA |
COSPAR ID | 1965-098B |
SATCAT no. | 01806 |
Spacecraft properties | |
Spacecraft | Explorer XXXI |
Spacecraft type | Direct Measurement Explorer |
Bus | DME |
Launch mass | 98.9 kg (218 lb) |
Start of mission | |
Launch date | 29 November 1965, 04:48:47 GMT [1] |
Rocket | Thor SLV-2 Agena B (Thor 453 / Agena 6102 (TA5)) |
Launch site | Vandenberg, SLC-2E |
Contractor | Douglas Aircraft Company / Lockheed Corporation |
Entered service | 29 November 1965 |
Orbital parameters | |
Reference system | Geocentric orbit [2] |
Regime | Low Earth orbit |
Perigee altitude | 505 km (314 mi) |
Apogee altitude | 2,978 km (1,850 mi) |
Inclination | 79.80° |
Period | 121.40 minutes |
Instruments | |
Cylindrical Electrostatic Probes Electron Temperature Energetic Electron Current Monitor Ion Mass Spectrometer Magnetic Ion-Mass Spectrometer Thermal Electron Probe Thermal Ion Probe | |
Explorer program |
Explorer 31, also called DME-A, was a NASA satellite launched as part of the Explorer program. Explorer 31 was launched on 29 November 1965 from Vandenberg Air Force Base, California, with a Thor-Agena launch vehicle. Explorer 31 was released along with the Canadian satellite Alouette 2. [3]
Explorer 31 was a small ionospheric observatory instrumented to make direct measurements of selected ionospheric parameters at the spacecraft. Since the spacecraft had no tape recorder, data could be observed at the spacecraft only when the spacecraft was in sight of the telemetry station and when commanded on. Experiments were operated either simultaneously or sequentially, as desired. The satellite was spin-stabilized with the spin axis perpendicular to the orbit plane. The spin rate and spin axis were controlled by an onboard magnetic torquing system. The attitude and spin rate information were observed by a Sun sensor and a three-axis magnetometer. [3]
Satellite performance was satisfactory except for a partial power failure in May 1966, which reduced data acquisition time to about half the nominal amount. Some difficulties were encountered in obtaining attitude information that was necessary for the reduction of the experiment observations. On July 1, 1969, the satellite data observations were terminated with five of the seven experiments operating. Responsibility for standby monitoring of the satellite was given to the ESSA telemetry station at Boulder, Colorado, on July 8, 1969. During this standby operation, experiment data were collected only once on 1 October 1969, for 9 minutes from the electrostatic probe for use in studying a red arc event. On January 15, 1971, no response was received from a variety of satellite commands, and the satellite was abandoned. [3]
The cylindrical electrostatic probes were used to measure electron temperature and density in the ionosphere. Each sensor was basically a Langmuir probe consisting of a collector electrode extending from the central axis of a cylindrical guard ring. The guard rings extended 23 cm (9.1 in) from the spacecraft and the collector electrode extended 46 cm (18 in). The two sensors were mounted on opposite sides of the spacecraft, and were perpendicular to the spin axis and in the orbit plane. [4]
The purpose of the electron temperature probe was to measure the energy distribution of ionospheric electrons. From these measurements electron temperature and density could be derived. The sensor was a disk, 2 cm (0.79 in) in diameter, mounted flush with the satellite surface. The probe current-voltage characteristics were investigated by means of the same modulation technique that was used in the spherical ion-mass spectrometer. [5]
The purpose of this experiment was to measure the electron energy spectrum in the suprathermal energy range of 0.2 to 2000 eV. Two three-grid retarding potential analyzers were used, one providing analog data in the 0.2 to 200 eV range and the other providing digital data in the 0.2 to 2000 eV range. The two analyzers had separate power supplies and associated electronics. The instrumentation for the digital measurement included an electron multiplier and a digital pulse counting system. Because of moisture contamination of the detector in the launch tower prior to launch, the gain of the electron multiplier was so degraded that no geophysical measurements could be obtained. The instrumentation for the analog measurement included a range-changing electrometer. The analog data were plots of the measured current-voltage function. The analog experiment yielded excellent data for 4 months, after which the experiment deteriorated because of radiation damage to its circuitry. [6]
The spherical ion mass spectrometer probe was used to investigate the composition of positive ions at altitudes between 500 km (310 mi) and 3,000 km (1,900 mi). The instrument consisted of a 9 cm (3.5 in) diameter ion collector, circumscribed by a 10 cm (3.9 in) diameter nickel grid that was approximately 40% transparent. The grid had a 6-volts bias to prevent electrons from reaching the collector. The probe rested on top of a 32 cm (13 in)-long rod mounted along the satellite spin axis. In addition to the principal bias-potential sweep, two small ac potentials were applied to the collector. The amplitude and depth of modulation of the resulting carrier current were then measured as a function of probe potential. This "retarding potential" ion spectrometer had low resolution. Hydrogen, with a mass-to-charge ratio (M/Q) of 1, was readily distinguished from atomic oxygen ions (M/Q = 16). However, atomic nitrogen ions (M/Q = 14) could not be distinguished from atomic oxygen ions. The signal current to the probe varied inversely with ionic mass, and consequently, the instrument was less sensitive to heavy masses. When the concentration of atomic oxygen ions was significantly greater than 300 ions per cc, accurate temperature measurements could be made for the atomic oxygen ions. [7]
A magnetic sector field mass spectrometer was used to measure the abundances of the ionospheric positive ion species in the mass range 1 to 20 atomic mass units. The mass range was swept every 3-seconds by an exponentially decreasing accelerating voltage, which varied from -4000 to -150 volts. The ions were separated according to mass-to-charge ratio in the magnetic analyzer section of the spectrometer. A particular ion species, depending on the accelerating voltage, was then passed through the analyzer into an electron multiplier. The output ion current from the multiplier was measured by a logarithmic electrometer amplifier and converted to a voltage. The experiment operated normally and yielded useful data from launch on 29 November 1965, until about April 1967. Then low battery voltage resulted in a voltage regulator problem. The experiment provided useful data only intermittently after that, and it failed in March 1968. [8]
The purpose of the thermal electron probe experiment was to measure the electron density and temperature at the satellite. The instrumentation was a modified Langmuir probe in which unwanted ion and photo-current components were eliminated through the use of a grid with appropriate bias. The grid was mounted flush with the satellite surface and it received a sweep voltage of from -5 to +4 V. The collector was biased at +25 V. From the measured current-voltage data the electron density could be obtained with an accuracy of about 20%. The electron temperature could normally be obtained with an accuracy of about 150K, but a computer curve-fitting analysis improved the accuracy to about 10K. [9]
The purpose of the thermal ion probe experiment was to measure ion density, temperature, and composition at the satellite. The sensor consisted of a planar ion trap with three circular mesh grids and a collector. With the innermost suppressor grid maintained at -15 V to exclude electrons and the middle retarding grid swept from zero to 6.3 V, the resulting current-voltage curve due to ion current was interpreted to obtain ion temperature, ion composition, and density. Determination of these parameters was made by curve fitting, assuming various models of ion parameters and assuming that the model with the least rms residual was correct. [10]
Explorer 35,, was a spin-stabilized spacecraft built by NASA as part of the Explorer program. Designed for the study of the interplanetary plasma, magnetic field, energetic particles, and solar X-rays, from lunar orbit.
Explorer 32, also known as Atmosphere Explorer-B (AE-B), was a NASA satellite launched by the United States to study the Earth's upper atmosphere. It was launched from Cape Canaveral on a Delta C1 launch vehicle, on 25 May 1966. It was the second of five "Atmosphere Explorer", the first being Explorer 17. Though it was placed in a higher-than-expected orbit by a malfunctioning second stage on its launch vehicle, Explorer 32 returned data for ten months before failing due to a sudden depressurization. The satellite reentered the Earth's atmosphere on 22 February 1985.
The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft designed to study radio waves and plasma that occur in the solar wind and in the Earth's magnetosphere. It was launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.
Explorer 17 was a NASA satellite, launched at Cape Canaveral from LC-17B on a Delta B launch vehicle, on 3 April 1963, at 02:00:02 GMT, to study the Earth's upper atmosphere. It was the first satellite of five "Atmosphere Explorer".
Explorer 8 was a NASA research satellite launched on 3 November 1960. It was intended to study the temporal and spatial distribution of the electron density, the electron temperature, the ion concentration, the ion mass, the micrometeorite distribution, and the micrometeorite mass in the ionosphere at altitudes between 400 km (250 mi) and 1,600 km (990 mi) and their variation from full sunlit conditions to full shadow, or nighttime, conditions.
The Fast Auroral SnapshoT Explorer was a NASA plasma physics satellite, and was the second spacecraft in the Small Explorer program (SMEX). It was launched on 21 August 1996, from Vandenberg Air Force Base aboard a Pegasus XL launch vehicle. The spacecraft was designed and built by NASA's Goddard Space Flight Center (GSFC). Flight operations were handled by GSFC for the first three years, and thereafter were transferred to the University of California, Berkeley's Space Sciences Laboratory.
Explorer 33, also known as IMP-D and AIMP-1, is a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.
Explorer 54, also called as AE-D, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 6 October 1975 from Vandenberg Air Force Base board a Thor-Delta 2910 launch vehicle.
Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.
Explorer 27 was a small NASA satellite, launched in 1965, designed to conduct scientific research in the ionosphere. It was powered by 4 solar panels. One goal of the mission was to study in detail the shape of the Earth by way of investigating variations in its gravitational field. It was the third and last of the Beacons in the Explorers program. The satellite was shut off in July 1973 so that its transmission band could be used by higher-priority spacecraft.
Explorer 28, also called IMP-C, IMP-3 and Interplanetary Monitoring Platform-3, was a NASA satellite launched on 29 May 1965 to study space physics, and was the third spacecraft launched in the Interplanetary Monitoring Platform program. It was powered by chemical batteries and solar panels. There were 7 experiments on board, all devoted to particle studies. Performance was normal until late April 1967, when intermittent problems began. It stayed in contact until 12 May 1967, when contact was lost. The orbit decayed until it re-entered the atmosphere on 4 July 1968. The spacecraft design was similar to its predecessors Explorer 18 (IMP-A), launched in November 1963, and Explorer 21 (IMP-B), launched in October 1964, though this satellite was a few kilograms lighter. The successor Explorer 33 (IMP-D) began the use of a new design.
Explorer 20, also known Ionosphere Explorer-A, IE-A, S-48, TOPSI and Topside Explorer, was a NASA satellite launched as part of Explorer program. Its purpose was two-fold: long-term investigation of the ionosphere from above, and in situ investigation of ion concentrations and temperatures.
Explorer 21, also called IMP-B, IMP-2 and Interplanetary Monitoring Platform-2, was a NASA satellite launched as part of Explorer program. Explorer 21 was launched on 4 October 1964, at 03:45:00 GMT from Cape Canaveral (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 21 was the second satellite of the Interplanetary Monitoring Platform, and used the same general design as its predecessor, Explorer 18 (IMP-A), launched the previous year, in November 1963. The following Explorer 28 (IMP-C), launched in May 1965, also used a similar design.
Explorer 22 was a small NASA ionospheric research satellite launched 9 October 1964, part of NASA's Explorer Program. It was instrumented with an electrostatic probe, four radio beacons for ionospheric research, a passive laser tracking reflector, and two radio beacons for Doppler navigation experiments. Its objective was to provide enhanced geodetic measurements of the Earth as well as data on the total electron content in the Earth's atmosphere and in the satellite's immediate vicinity.
Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.
Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.
Explorer 51, also called as AE-C, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 16 December 1973, at 06:18:00 UTC, from Vandenberg board a Delta 1900 launch vehicle.
Explorer 55, also called as AE-E, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 20 November 1975 from Cape Canaveral Air Force Station (CCAFS) board a Thor-Delta 2910 launch vehicle.
Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.
Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.