OV1-1

Last updated
OV1-1
OV1-1.jpg
OV1-1 satellite
Mission type Earth science
Operator USAF
COSPAR ID 1965-F01
Spacecraft properties
Manufacturer General Dynamics
Launch mass100 lb (45 kg) (satellite); 189.2 lb (85.8 kg) with Altair
Start of mission
Launch date21 January 1965 21:34:54 (1965-01-21UTC21:34:54) UTC
Rocket SM-65D Atlas
Launch site Vandenberg 576-B-3 [1]
OV1
OV1-3  
 

Orbiting Vehicle 1-1 (COSPAR ID: 1965-F01, also known as OV1-1), was the first satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-1 was an American Earth science research satellite designed to measure radiation, micrometeoroid density, and magnetic fields in orbit. Launched 21 January 1965, the mission resulted in failure when, after a successful launch of its Atlas booster, OV1-1's onboard Altair motor failed to fire. [2] :419

Contents

History

Lt. Col. Clyde Northcott, Jr. , OV1 program manager Lt. Col. Clyde Northcott, Jr. , OV1 program manager.jpg
Lt. Col. Clyde Northcott, Jr. , OV1 program manager

The Orbiting Vehicle satellite program arose from a US Air Force initiative, begun in the early 1960s, to reduce the expense of space research. Through this initiative, satellites would be standardized to improve reliability and cost-efficiency, and where possible, they would fly on test vehicles or be piggybacked with other satellites. In 1961, the Air Force Office of Aerospace Research (OAR) created the Aerospace Research Support Program (ARSP) to request satellite research proposals and choose mission experiments. The USAF Space and Missiles Organization created their own analog of the ARSP called the Space Experiments Support Program (SESP), which sponsored a greater proportion of technological experiments than the ARSP. [2] :417 Five distinct OV series of standardized satellites were developed under the auspices of these agencies. [2] :425

The OV1 series was an evolution of the 2.7 m "Scientific Passenger Pods" (SPP), which, starting on 2 October 1961, rode piggyback on suborbital Atlas missile tests and conducted scientific experiments during their short time in space. General Dynamics received a $2 million contract on 13 September 1963 to build a new version of the SPP (called the Atlas Retained Structure (ARS)) that would carry a self-orbiting satellite. Once the Atlas missile and ARS reached apogee, the satellite inside would be deployed and thrust itself into orbit. In addition to the orbital SPP, General Dynamics would create six of these satellites, each to be 3.66 m (12.0 ft) long with a diameter of .762 m (2 ft 6.0 in), able to carry a 136 kg (300 lb) payload into a circular 805 km (500 mi) orbit.

Dubbed "Satellite for Aerospace Research" (SATAR), the series of satellites was originally to be launched from the Eastern Test Range on Atlas missions testing experimental Advanced Ballistic Re-Entry System (ABRES) nosecones. However, in 1964, the Air Force transferred ABRES launches to the Western Test Range causing a year's delay for the program. Moreover, because WTR launches would be into polar orbit as opposed to the low-inclination orbits typical of ETR launches, less mass could be lofted into orbit using the same thrust, and the mass of the SATAR satellites had to be reduced. [2] :417 The OV1 program was managed by Lt. Col. Clyde Northcott, Jr. [3]

OV1-1 with solid motor undergoing balance test at General Dynamics/Astronautics in San Diego Ov1-1shaketest.jpg
OV1-1 with solid motor undergoing balance test at General Dynamics/Astronautics in San Diego

Spacecraft design

OV1-1, like the other satellites in the OV1 series, was 1.387 m (4 ft 6.6 in) long and .69 m (2 ft 3 in) in diameter, and consisted of a cylindrical experiment housing capped with flattened cones on both ends [4] containing 5000 solar cells (2500 on each end) [5] producing 22 watts of power. Two .46 m (1 ft 6 in) antennas for transmitting telemetry and receiving commands extended from the sides of the spacecraft. 12 helium-pressurized hydrogen peroxide thrusters provided attitude control. [2] :418 Spacecraft systems, including telemetry, command systems, and data recording and playback were located in the satellite's end-caps. An onboard timer would shut down the satellite after 180 days of operation. [5]

OV1-1 weighed 100 lb (45 kg), [6] 189.2 lb (85.8 kg) with its Altair booster. [7]

Though the OV1 series was designed to be nose-launched from its carrying rocket, on OV1-1, the ARS was side-mounted. [8]

Experiments

170,000 cubic centimetres (6.0 cu ft) of space in the cylindrical portion of the spacecraft [5] was allocated to a seven experiment package designed to measure micrometeoroid density, cosmic radio noise, electron density variations, magnetic fields, proton concentrations, and Earth-based infrared and ultraviolet emissions. [2] :419

Mission

Launched from Vandenberg's 576-B-3 launch pad at 21 January 1965 21:34:54 UTC, [1] OV1-1 (then called Aerospace Research Vehicle (ARV)) was the first satellite launched into a western-facing orbit. [6] Five minutes after launch, the ARS was designed to open so that the OV satellite could propel itself out at Atlas apogee. [5] While the Atlas D carrying OV1-1 flew without incident, OV1-1's Altair booster did not fire at apogee, and the spacecraft remained stranded in its ARS, returning no data. [2] :419

Legacy and status

The OV1 program ultimately comprised 22 missions, the last flying on 19 September 1971. [2] :421

Related Research Articles

Orbiting Vehicle or OV, originally designated SATAR, comprised five disparate series of standardized American satellites operated by the US Air Force, launched between 1965 and 1971. Forty seven satellites were built, of which forty three were launched and thirty seven reached orbit. With the exception of the OV3 series and OV4-3, they were launched as secondary payloads, using excess space on other missions.

OPS 0855 American boilerplate Manned Orbital Laboratory spacecraft

OPS 0855, also designated OV4-3, was an American boilerplate Manned Orbiting Laboratory spacecraft launched in 1966. It was flown to demonstrate the launch configuration for future MOL missions. A number of research payloads, designated Manifold, were carried on board, which were intended to operate for 75 days. However, the spacecraft ceased operations after just 30. It was built from a decommissioned HGM-25A Titan I first stage oxidizer tank, bolted to a Transtage. It was part of the MOL and Orbiting Vehicle projects.

Pegasus 2

Pegasus 2 or Pegasus II, known before launch as Pegasus B was an American satellite which was launched in 1965 to study micrometeoroid impacts in Low Earth orbit. It was the second of three Pegasus satellites to be launched, following the launch of Pegasus 1 three months earlier. The Pegasus spacecraft were manufactured by Fairchild Hiller, and operated by NASA.

Pegasus 3 American satellite

Pegasus 3 or III, also known as Pegasus C before launch, was an American satellite which was launched in 1965 to study micrometeoroid impacts in Low Earth orbit. It was the last of three Pegasus satellites to be launched, the previous two having been launched earlier the same year. It was manufactured by Fairchild Hiller, and operated by NASA.

OV2-1 US Air Force satellite

Orbiting Vehicle 2-1, the first satellite of the second series of the United States Air Force's Orbiting Vehicle program, was an American life science research satellite. Its purpose was to determine the extent of the threat posed to astronauts by the Van Allen radiation belts. Launched 15 October 1965, the mission resulted in failure when the upper stage of OV2-1's Titan IIIC booster broke up.

OV1-3 US Air Force satellite

Orbiting Vehicle 1-3, was the second satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-3 was an American life science research satellite designed to measure the effects of orbital radiation on the human body. Launched 28 May 1965, the mission resulted in failure when its Atlas booster exploded two minutes after launch.

OV1-2 US Air Force satellite

Orbiting Vehicle 1-2, launched 5 October 1965, was the third, and first successful, satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. A radiation measuring satellite designed to conduct research for the planned Manned Orbital Laboratory project, OV1-2 was the first American spacecraft to be placed into orbit on a western trajectory. The satellite stopped functioning in April 1967 after a series of technical problems starting two months after launch.

OV2-3 US Air Force satellite

Orbiting Vehicle 2-3, the second satellite of the second series of the United States Air Force's Orbiting Vehicle program, was an American solar astronomy, geomagnetic and particle science research satellite. Launched 22 December 1965 along with three other satellites, the mission resulted in failure when the spacecraft failed to separate from the upper stage of its Titan IIIC.

OV1-4 US Air Force satellite

Orbiting Vehicle 1-4, launched 30 Mar 1966, was the fourth, and second successful, satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-4 was a long-term bioscience and materials science satellite, designed to return data relevant to long-term human presence in space. Its launch marked the first time two satellites were placed into orbit side-by-side with each other.

OV1-5 US Air Force satellite

Orbiting Vehicle 1-5 was launched 30 Mar 1966, and was the fifth satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-5 conducted optical experiments, surveying the Earth in the infrared spectrum to see if water, land, mountains and deserts could be distinguished by their thermal gradients. It was launched concurrently with OV1-4 in the first ever side-by-side satellite orbital deployment.

OV3-1 US Air Force satellite

Orbiting Vehicle 3-1, launched 22 April 1966, was the first satellite in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured radiation above the Earth, returning useful data for over a year. It is still in orbit as of 1 April 2021.

OV3-4 US Air Force satellite

Orbiting Vehicle 3-4, launched 10 June 1966, was the second satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured radiation above the Earth, helping to determine the hazard posed to human spaceflight at typically traveled altitudes. OV3-4 is still in orbit as of 6 June 2021.

OV2-5 US Air Force satellite

Orbiting Vehicle 2-5, the third and last satellite of the second series of the United States Air Force's Orbiting Vehicle program, was an American particle science and ionosphere research satellite. Launched 26 September 1968 along with three other satellites, OV2-5 became the first scientific satellite to operate at geosynchronous altitude.

OV1-7 US Air Force satellite

Orbiting Vehicle 1-7, launched 14 July 1966, was the sixth satellite launched in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-7 was a sky science satellite, designed to return data on charged particles in orbit as well as measurements of solar X-rays and nightglow. Co-launched with OV1-8, the satellite was lost when it failed to detach from its launch rocket.

OV1-8 US Air Force satellite

Orbiting Vehicle 1-8, launched 14 July 1966, was the seventh satellite launched in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-8 was designed to test the passive communications utility of an aluminum grid sphere versus a balloon satellite.

OV3-3 US Air Force satellite

Orbiting Vehicle 3-3, launched 4 August 1966, was the third satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured charged particles in orbit so that their danger to space-based payloads could be assessed. OV3-3 is still in orbit as of 29 July 2021.

OV3-2 US Air Force satellite

Orbiting Vehicle 3-2, launched 28 October 1966, was the fourth satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured charged particles in orbit, mapping irregularities in the ionosphere, particularly the auroral zone. OV3-2 reentered the Earth's atmosphere on 29 September 1971.

OV1-6 US Air Force satellite

Orbiting Vehicle 1-6 was launched via Titan IIIC rocket into orbit 2 November 1966 along with two other satellites in the United States Air Force's Orbiting Vehicle series on the first and only Manned Orbiting Laboratory test flight. The eighth satellite in the OV1 series to be launched, OV1-6 was designed to release a number of inflatable spheres, which would then be used in classified tracking experiments conducted on the ground. It is uncertain whether or not the satellite successfully released any of its spheres. OV1-6 reentered the Earth's atmosphere on 31 December 1966.

OV1-9 US Air Force satellite

Orbiting Vehicle 1-9, launched 11 December 1966 along with OV1-10, was the ninth satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. OV1-9 recorded low frequency radio emissions and particle radiation in Earth's exosphere; the satellite also collected data on the impact of long-term radiation on biological samples and tissue equivalents. OV1-9 returned the first proof that Earth has an electric field.

OV1-10 US Air Force satellite

Orbiting Vehicle 1-10, launched 11 December 1966 along with OV1-9, was the tenth satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. Designed to observe atmospheric airglow, X-ray and cosmic radiation, OV1-10 returned significant data on the Sun as well as on geophysical phenomena in Earth's magnetic field. OV1-10 reentered Earth's atmosphere on 30 November 2002.

References

  1. 1 2 McDowell, Jonathan. "Launch Log". Jonathan's Space Report. Retrieved December 30, 2018.
  2. 1 2 3 4 5 6 7 8 Powell, Joel W.; Richards, G.R. (1987). "The Orbiting Vehicle Series of Satellites". Journal of the British Interplanetary Society. Vol. 40. London: British Interplanetary Society.
  3. "The OV1-Promoter of timely space research". Proceedings of the OAR Research Applications Conference, 14 March 1967. Washington D.C.: Officer of Aerospace Research, United States Air Force. 1967.
  4. Krebs, Gunter. "OV1" . Retrieved 24 April 2020.
  5. 1 2 3 4 "Orbital Vehicle". TRW Space Log. Vol. 5nNumber = 2. Summer 1965. pp. 41–42.
  6. 1 2 "Aeronautics and Astronautics, 1965" (PDF). NASA. p. 24. Retrieved 24 April 2020.
  7. William R. Corliss (1967). Scientific Satellites. Washington D.C.: Science and Technical Information Division, Office of Technology Utilization, NASA. pp. 711–3. Retrieved 11 May 2020.
  8. Jos Heyman (September 2010). "Intel... The Orbiting Vehicle Series (OV1)". MilsatMagazine. Satnews. Retrieved 15 May 2021.