Ranger 8

Last updated

Ranger 8
The Ranger Spacecraft GPN-2000-001979.jpg
Ranger 8
Mission type Lunar impactor
Operator NASA
COSPAR ID 1965-010A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 1086
Mission duration65 hours
Spacecraft properties
Manufacturer Jet Propulsion Laboratory
Launch mass366.87 kg [1]
Dimensions1.52 m × 2.51 m (5.0 ft × 8.2 ft)
Power200 W
Start of mission
Launch dateFebruary 17, 1965, 17:05:00 (1965-02-17UTC17:05Z) UTC [1]
Rocket Atlas LV-3 Agena-B 196D/AA13
Launch site Cape Canaveral LC-12
Lunar impactor
Impact dateFebruary 20, 1965, 09:57:36.756 (1965-02-20UTC09:57:37Z) UTC
Impact site 2°38′16″N24°47′17″E / 02.6377°N 24.7881°E / 02.6377; 24.7881
(Mare Tranquillitatis)
  Ranger 7
Ranger 9  

Ranger 8 was a lunar probe in the Ranger program, a robotic spacecraft series launched by NASA in the early-to-mid-1960s to obtain the first close-up images of the Moon's surface. These pictures helped select landing sites for Apollo missions and were used for scientific study. [2] During its 1965 mission, Ranger 8 transmitted 7,137 lunar surface photographs before it crashed into the Moon as planned. This was the second successful mission in the Ranger series, following Ranger 7. Ranger 8's design and purpose were very similar to those of Ranger 7. It had six television vidicon cameras: two full-scan and four partial-scan. Its sole purpose was to document the Moon's surface. [3]

Contents

Spacecraft design

General

Diagram of Ranger 8. Ranger 6789.svg
Diagram of Ranger 8.

Ranger spacecraft were originally designed, beginning in 1959, in three distinct phases called "blocks". Rangers 6, 7, 8, and 9 were the Block 3 versions. The spacecraft consisted of a hexagonal aluminum frame base 1.5 m across on which was mounted the propulsion and power units, topped by a truncated conical tower that held the television cameras. Two solar panel wings, each 739 mm wide by 1537 mm long, extended from opposite edges of the base with a full span of 4.6 m, and a pointable high-gain dish antenna was hinge mounted at one of the corners of the base away from the solar panels. A cylindrical quasi-omnidirectional antenna was seated on top of the conical tower. The overall height of the spacecraft was 3.6 m. [3]

Propulsion for the mid-course trajectory correction was provided by a 224 N thrust monopropellant hydrazine engine with four jet-vane vector control. Orientation and attitude control about three axes was enabled by twelve nitrogen gas jets coupled to a system of three gyroscopes, four primary Sun sensors, two secondary Sun sensors, and an Earth sensor. Power was supplied by 9,792 silicon solar cells contained in the two solar panels, giving a total array area of 2.3 square meters and producing 200 W. Two 1200-watt-hour AgZnO batteries rated at 26.5 V with a capacity for 9 hours of operation provided power to each of the separate communication/TV camera chains. Two 1000-watt-hour AgZnO batteries stored power for spacecraft operations. [3]

Cameras

The spacecraft carried six television vidicon cameras —two wide-angle (channel F, cameras A and B) and four narrow-angle (channel P) —to accomplish these objectives. [4] The cameras were arranged in two separate chains, or channels; each was self-contained with separate power supplies, timers, and transmitters, to afford the greatest reliability and probability of obtaining high-quality television pictures. No other experiments were carried on the spacecraft. [3]

Communications

Communications were through the quasiomnidirectional low-gain antenna and the parabolic high-gain antenna. Transmitters aboard the spacecraft included a 60-watt television channel F at 959.52  MHz, a 60-watt television channel P at 960.05 MHz, and a 3-watt transponder channel 8 at 960.58 MHz. The telecommunications equipment converted the composite video signal from the camera transmitters into a radio-frequency signal for subsequent transmission through the spacecraft's high-gain antenna. Sufficient video bandwidth was provided to allow for rapid framing sequences of both narrow- and wide-angle television pictures. [3]

Mission profile

Launch of Ranger 8 by an Atlas-Agena rocket (Atlas 196D) Ranger8 launch.jpg
Launch of Ranger 8 by an Atlas-Agena rocket (Atlas 196D)

The Atlas 196D and Agena B 6006 boosters performed nominally, injecting the Agena and Ranger 8 into an Earth parking orbit at 185 km altitude after launch. Fourteen minutes later a 90-second burn of the Agena put the spacecraft into lunar transfer trajectory, and several minutes later the Ranger and Agena separated. The Ranger solar panels were deployed, attitude control activated, and spacecraft transmissions switched from the omniantenna to the high-gain antenna by 21:30 UT. On February 18, at a distance of 160,000 km from Earth, the planned mid-course maneuver took place, involving reorientation and a 59-second rocket burn. During the 27-minute maneuver, spacecraft transmitter power dropped severely, so that lock was lost on all telemetry channels. This continued intermittently until the rocket burn ended, at which time power returned to normal. The telemetry dropout had no serious effects on the mission. A planned terminal sequence to point the cameras more in the direction of flight just before reaching the Moon was cancelled to allow the cameras to cover a greater area of the Moon's surface. [3]

Ranger 8 reached the Moon on February 20, 1965. [5] The first image was taken at 9:34:32 UT at an altitude of 2510 km. Transmission of 7,137 photographs [5] of good quality occurred over the final 23 minutes of flight. The final image taken before impact has a resolution of 1.5 meters.

The spacecraft encountered the lunar surface in a direct hyperbolic trajectory, with incoming asymptotic direction at an angle of −13.6 degrees from the lunar equator. The orbit plane was inclined 16.5 degrees to the lunar equator. After 64.9 hours of flight, impact occurred at 09:57:36.756 UT on February 20, 1965, in Mare Tranquillitatis at approximately 2.67° N, 24.65° E. (The impact site is listed as about 2.72° N, 24.61° E in the initial report "Ranger 8 Photographs of the Moon".) Impact velocity was slightly less than 2.68 km/s, approximately 6,000 mph. The spacecraft performance was excellent. [3]

The impact crater of Ranger 8, approximately 13.5 m wide, was later photographed by Lunar Orbiter 4 . [6]

See also

Related Research Articles

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System – visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<span class="mw-page-title-main">Mariner 4</span> First successful NASA mission to Mars (1964–1967)

Mariner 4 was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964, Mariner 4 performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, dead planet largely changed the scientific community's view of life on Mars. Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. Initially expected to remain in space for eight months, Mariner 4's mission lasted about three years in solar orbit. On December 21, 1967, communications with Mariner 4 were terminated.

<span class="mw-page-title-main">Surveyor 7</span> American lunar lander

Surveyor 7 was sent to the Moon in 1968 on a scientific and photographic mission as the seventh and last lunar lander of the American uncrewed Surveyor program. With two previous unsuccessful missions in the Surveyor series, and with Surveyor 7's landing success, Surveyor 7 became the fifth and final spacecraft in the series to achieve a lunar soft landing. A total of 21,091 pictures were transmitted from Surveyor 7 back to Earth.

<span class="mw-page-title-main">Surveyor 3</span> American lunar lander

Surveyor 3 is the third lander of the American uncrewed Surveyor program sent to explore the surface of the Moon in 1967 and the second to successfully land. It was the first mission to carry a surface-soil sampling-scoop.

<span class="mw-page-title-main">Pioneer 4</span> First successful NASA mission to the Moon (1959)

Pioneer 4 was an American spin-stabilized uncrewed spacecraft launched as part of the Pioneer program on a lunar flyby trajectory and into a heliocentric orbit making it the first probe of the United States to escape from the Earth's gravity. Launched on March 3, 1959, it carried a payload similar to Pioneer 3: a lunar radiation environment experiment using a Geiger–Müller tube detector and a lunar photography experiment. It passed within 58,983 km (36,650 mi) of the Moon's surface. However, Pioneer 4 did not come close enough to trigger its photoelectric sensor. The spacecraft was still in solar orbit as of 1969. It was the only successful lunar probe launched by the U.S. in 12 attempts between 1958 and 1963; only in 1964 would Ranger 7 surpass its success by accomplishing all of its mission objectives.

<span class="mw-page-title-main">Ranger 1</span>

Ranger 1 was a prototype spacecraft launched as part of the Ranger program of uncrewed space missions. Its primary mission was to test the performance of those functions and parts necessary for carrying out subsequent lunar and planetary missions; a secondary objective was to study the nature of particles and fields in the space environment. Due to a launch vehicle malfunction, the spacecraft could reach only Low Earth orbit, rather than the high Earth orbit that had been planned, and was only able to complete part of its mission.

<span class="mw-page-title-main">Ranger 2</span>

Ranger 2 was a flight test of the Ranger spacecraft system of the NASA Ranger program designed for future lunar and interplanetary missions. Ranger 2 was designed to test various systems for future exploration and to conduct scientific observations of cosmic rays, magnetic fields, radiation, dust particles, and a possible hydrogen gas "tail" trailing the Earth.

<span class="mw-page-title-main">Ranger 3</span> 1962 robotic lunar exploration mission by NASA; malfunctioned

Ranger 3 was a space exploration mission conducted by NASA to study the Moon. The Ranger 3 robotic spacecraft was launched January 26, 1962 as part of the Ranger program. Due to a series of malfunctions, the spacecraft missed the Moon by 22,000 mi (35,000 km) and entered a heliocentric orbit.

<span class="mw-page-title-main">Ranger 4</span> 1962 American unmanned space flight intended to study the Moon

Ranger 4 was a spacecraft of the Ranger program, launched in 1962. It was designed to transmit pictures of the lunar surface to Earth stations during a period of 10 minutes of flight prior to crashing upon the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft.

<span class="mw-page-title-main">Ranger 5</span> Failed NASA lunar impactor (1962)

Ranger 5 was a spacecraft of the Ranger program designed to transmit pictures of the lunar surface to Earth stations during a period of 10 minutes of flight prior to impacting on the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft. Due to an unknown malfunction, the spacecraft ran out of power and ceased operation. It passed within 725 km of the Moon.

<span class="mw-page-title-main">Surveyor 1</span> Lunar lander spacecraft

Surveyor 1 was the first lunar soft-lander in the uncrewed Surveyor program of the National Aeronautics and Space Administration. This lunar soft-lander gathered data about the lunar surface that would be needed for the crewed Apollo Moon landings that began in 1969. The successful soft landing of Surveyor 1 on the Ocean of Storms was the first by an American space probe on any extraterrestrial body, occurring on the first attempt and just four months after the first soft Moon landing by the Soviet Union's Luna 9 probe.

<span class="mw-page-title-main">Ranger program</span> American uncrewed lunar space missions in the 1960s

The Ranger program was a series of uncrewed space missions by the United States in the 1960s whose objective was to obtain the first close-up images of the surface of the Moon. The Ranger spacecraft were designed to take images of the lunar surface, transmitting those images to Earth until the spacecraft were destroyed upon impact. A series of mishaps, however, led to the failure of the first six flights. At one point, the program was called "shoot and hope". Congress launched an investigation into "problems of management" at NASA Headquarters and Jet Propulsion Laboratory. After two reorganizations of the agencies, Ranger 7 successfully returned images in July 1964, followed by two more successful missions.

<span class="mw-page-title-main">Lunar Orbiter program</span> Series of five uncrewed lunar orbiter missions

The Lunar Orbiter program was a series of five uncrewed lunar orbiter missions launched by the United States in 1966 and 1967. Intended to help select Apollo landing sites by mapping the Moon's surface, they provided the first photographs from lunar orbit and photographed both the Moon and Earth.

<i>Nozomi</i> (spacecraft) Failed Japanese orbiter mission to Mars (1998–2003)

Nozomi was a Japanese Mars orbiter that failed to reach Mars due to electrical failure. It was constructed by the Institute of Space and Astronautical Science, University of Tokyo and launched on July 4, 1998, at 03:12 JST with an on-orbit dry mass of 258 kg and 282 kg of propellant. The Nozomi mission was terminated on December 31, 2003.

<span class="mw-page-title-main">Ranger 7</span> NASA lunar impactor (1964)

Ranger 7 was the first NASA space probe to successfully transmit close-up images of the lunar surface back to Earth. It was also the first completely successful flight of the Ranger program. Launched on July 28, 1964, Ranger 7 was designed to achieve a lunar-impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact.

<span class="mw-page-title-main">Ranger 6</span> Failed NASA lunar impactor (1964)

Ranger 6 was a lunar probe in the NASA Ranger program, a series of robotic spacecraft of the early and mid-1960s to obtain close-up images of the Moon's surface. It was launched on January 30, 1964 and was designed to transmit high-resolution photographs of the lunar terrain during the final minutes of flight until impacting the surface. The spacecraft carried six television vidicon cameras—two wide-angle and four narrow-angle —to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. No other experiments were carried on the spacecraft. Due to a failure of the camera system, no images were returned.

<span class="mw-page-title-main">Ranger 9</span> Lunar space probe launched in 1965 as part of NASAs Ranger program

Ranger 9 was a Lunar probe, launched in 1965 by NASA. It was designed to achieve a lunar impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact. The spacecraft carried six television vidicon cameras—two wide-angle and four narrow-angle —to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. These images were broadcast live on television to millions of viewers across the United States. No other experiments were carried on the spacecraft.

<span class="mw-page-title-main">Moon landing</span> Arrival of a spacecraft on the Moons surface

A Moon landing or lunar landing is the arrival of a spacecraft on the surface of the Moon, including both crewed and robotic missions. The first human-made object to touch the Moon was Luna 2 in 1959.

<span class="mw-page-title-main">Atlas-Agena</span> American expendable launch system

The Atlas-Agena was an American expendable launch system derived from the SM-65 Atlas missile. It was a member of the Atlas family of rockets, and was launched 109 times between 1960 and 1978. It was used to launch the first five Mariner uncrewed probes to the planets Venus and Mars, and the Ranger and Lunar Orbiter uncrewed probes to the Moon. The upper stage was also used as an uncrewed orbital target vehicle for the Gemini crewed spacecraft to practice rendezvous and docking. However, the launch vehicle family was originally developed for the Air Force and most of its launches were classified DoD payloads.

<span class="mw-page-title-main">Explorer 49</span> NASA satellite of the Explorer program

Explorer 49 was a NASA 328 kg (723 lb) satellite launched on 10 June 1973, for long wave radio astronomy research. It had four 230 m (750 ft) X-shaped antenna elements, which made it one of the largest spacecraft ever built.

References

PD-icon.svg This article incorporates public domain material from Ranger 8. National Aeronautics and Space Administration.

  1. 1 2 "Ranger 8". NASA's Solar System Exploration website. Retrieved December 1, 2022.
  2. Green, Nick (2013). "Ranger 8 Information". New York: About.com. Archived from the original on May 11, 2013. Retrieved July 31, 2013.
  3. 1 2 3 4 5 6 7 "Ranger 8". National Space Science Data Center . Retrieved July 31, 2013.
  4. Capelotti, Peter Joseph (2010). The Human Archaeology of Space: Lunar, Planetary and Interstellar Relics of Exploration. McFarland. pp. 47–48. ISBN   978-0-7864-5994-0.
  5. 1 2 Darling, David (2003). The Complete Book of Spaceflight: From Apollo 1 to Zero Gravity . Hoboken, New Jersey: John Wiley & Sons. p.  339. ISBN   978-0-471-05649-2.
  6. North, Gerald (July 5, 2007). Observing the Moon. Cambridge, England, UK: Cambridge University Press. p. 140. ISBN   978-1-139-46494-9.

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .