Mission type | Mercury orbiter |
---|---|
Operator | NASA |
COSPAR ID | 2004-030A |
SATCAT no. | 28391 |
Website | messenger |
Mission duration | |
Spacecraft properties | |
Manufacturer | Applied Physics Laboratory |
Launch mass | 1,107.9 kg (2,443 lb) [5] |
Power | 450 watts |
Start of mission | |
Launch date | August 3, 2004, 06:15:56 UTC |
Rocket | Delta II 7925H-9.5 |
Launch site | Cape Canaveral, SLC-17B |
Entered service | April 4, 2011 |
End of mission | |
Disposal | Crashed into Mercury |
Destroyed | April 30, 2015, 19:26 UTC [6] |
Orbital parameters | |
Reference system | Hermiocentric |
Perihermion altitude | 200 km (120 mi) |
Apohermion altitude | 10,300 km (6,400 mi) |
Inclination | 80° |
Period | 12 hours |
Epoch | January 1, 2000 [7] |
Flyby of Earth (gravity assist) | |
Closest approach | August 2, 2005 |
Distance | 2,347 km (1,458 mi) |
Flyby of Venus (gravity assist) | |
Closest approach | October 24,2006 |
Distance | 2,990 km (1,860 mi) |
Flyby of Venus (gravity assist) | |
Closest approach | June 5,2007 |
Distance | 337 km (209 mi) |
Flyby of Mercury | |
Closest approach | January 14,2008 |
Distance | 200 km (120 mi) |
Flyby of Mercury | |
Closest approach | October 6,2008 |
Distance | 200 km (120 mi) |
Flyby of Mercury | |
Closest approach | September 29,2009 |
Distance | 228 km (142 mi) |
Mercury orbiter | |
Orbital insertion | March 18,2011,01:00 UTC [8] |
|
MESSENGER was a NASA robotic space probe that orbited the planet Mercury between 2011 and 2015,studying Mercury's chemical composition,geology,and magnetic field. [9] [10] The name is a backronym for Mercury Surface,Space Environment,Geochemistry,and Ranging,and a reference to the messenger god Mercury from Roman mythology.
MESSENGER was launched aboard a Delta II rocket in August 2004. Its path involved a complex series of flybys –the spacecraft flew by Earth once,Venus twice,and Mercury itself three times,allowing it to decelerate relative to Mercury using minimal fuel. During its first flyby of Mercury in January 2008,MESSENGER became the second mission,after Mariner 10 in 1975,to reach Mercury. [11] [12] [13]
MESSENGER entered orbit around Mercury on March 18,2011,becoming the first spacecraft to do so. [9] It successfully completed its primary mission in 2012. [2] Following two mission extensions,the spacecraft used the last of its maneuvering propellant to deorbit,impacting the surface of Mercury on April 30,2015. [14]
MESSENGER's formal data collection mission began on April 4,2011. [15] The primary mission was completed on March 17,2012,having collected close to 100,000 images. [16] MESSENGER achieved 100% mapping of Mercury on March 6,2013,and completed its first year-long extended mission on March 17,2013. [2] The probe's second extended mission lasted for over two years,but as its low orbit degraded,it required reboosts to avoid impact. It conducted its final reboost burns on October 24,2014,and January 21,2015,before crashing into Mercury on April 30,2015. [17] [18] [19]
During its stay in Mercury orbit,the probe's instruments yielded significant data,including a characterization of Mercury's magnetic field [20] and the discovery of water ice at the planet's north pole, [21] [22] which had long been suspected on the basis of Earth-based radar data. [23]
In 1973,Mariner 10 was launched by NASA to make multiple flyby encounters of Venus and Mercury. Mariner 10 provided the first detailed data of Mercury,mapping 40–45% of the surface. [24] Mariner 10's final flyby of Mercury occurred on March 16,1975. No subsequent close-range observations of the planet would take place for more than 30 years.
In 1998,a study detailed a proposed mission to send an orbiting spacecraft to Mercury,as the planet was at that point the least-explored of the inner planets. In the years following the Mariner 10 mission,subsequent mission proposals to revisit Mercury had appeared too costly,requiring large quantities of propellant and a heavy lift launch vehicle. Moreover,inserting a spacecraft into orbit around Mercury is difficult,because a probe approaching on a direct path from Earth would be accelerated by the Sun's gravity and pass Mercury far too quickly to orbit it. However,using a trajectory designed by Chen-wan Yen [25] in 1985,the study showed it was possible to execute a Discovery-class mission by using multiple,consecutive gravity assist,'swingby' maneuvers around Venus and Mercury,in combination with minor propulsive trajectory corrections,to gradually slow the spacecraft and thereby minimize propellant needs. [26]
The MESSENGER mission was designed to study the characteristics and environment of Mercury from orbit. The scientific objectives of the mission were: [27] [28]
The MESSENGER spacecraft was designed and built at the Johns Hopkins University Applied Physics Laboratory. Science operations were managed by Sean Solomon as principal investigator,and mission operations were also conducted at JHU/APL. [29] The MESSENGER bus measured 1.85 meters (73 in) tall,1.42 m (56 in) wide,and 1.27 m (50 in) deep. The bus was primarily constructed with four graphite fiber / cyanate ester composite panels that supported the propellant tanks,the large velocity adjust (LVA) thruster,attitude monitors and correction thrusters,the antennas,the instrument pallet,and a large ceramic-cloth sunshade,measuring 2.5 m (8.2 ft) tall and 2 m (6.6 ft) wide,for passive thermal control. [29] At launch,the spacecraft weighed approximately 1,100 kilograms (2,400 lb) with its full load of propellant. [30] MESSENGER's total mission cost,including the cost of the spacecraft's construction,was estimated at under US$450 million. [31]
Main propulsion was provided by the 645 N,317 sec. Isp bipropellant (hydrazine and nitrogen tetroxide) large velocity assist (LVA) thruster. The model used was the LEROS 1b,developed and manufactured at AMPAC‐ISP's Westcott works,in the United Kingdom. The spacecraft was designed to carry 607.8 kilograms (1,340 lb) of propellant and helium pressurizer for the LVA. [29]
Four 22 N (4.9 lbf) monopropellant thrusters provided spacecraft steering during main thruster burns,and twelve 4.4 N (1.0 lbf) monopropellant thrusters were used for attitude control. For precision attitude control,a reaction wheel attitude control system was also included. [29] Information for attitude control was provided by star trackers,an inertial measurement unit and six Sun sensors. [29]
The probe included two small deep space transponders for communications with the Deep Space Network and three kinds of antennas:a high gain phased array whose main beam could be electronically steered in one plane,a medium-gain "fan-beam" antenna and a low gain horn with a broad pattern. The high gain antenna was used as transmit-only at 8.4 GHz,the medium-gain and low gain antennas transmit at 8.4 GHz and receive at 7.2 GHz,and all three antennas operate with right-hand circularly polarized (RHCP) radiation. One of each of these antennas was mounted on the front of the probe facing the Sun,and one of each was mounted to the back of the probe facing away from the Sun. [32]
The space probe was powered by a two-panel gallium arsenide/germanium solar array providing an average of 450 watts while in Mercury orbit. Each panel was rotatable and included optical solar reflectors to balance the temperature of the array. Power was stored in a common-pressure-vessel,23-ampere-hour nickel–hydrogen battery,with 11 vessels and two cells per vessel. [29]
The spacecraft's onboard computer system was contained in an Integrated Electronics Module (IEM),a device that combined core avionics into a single box. The computer featured two radiation-hardened IBM RAD6000s,a 25 megahertz main processor,and a 10 MHz fault protection processor. For redundancy,the spacecraft carried a pair of identical IEMs. For data storage,the spacecraft carried two solid-state recorders able to store up to one gigabyte each. The IBM RAD6000 main processor collected,compressed,and stored data from MESSENGER's instruments for later playback to Earth. [29]
MESSENGER used a software suite called SciBox to simulate its orbit and instruments,in order to "choreograph the complicated process of maximizing the scientific return from the mission and minimizing conflicts between instrument observations,while at the same time meeting all spacecraft constraints on pointing,data downlink rates,and onboard data storage capacity." [33]
Included two CCD cameras,a narrow-angle camera (NAC) and a wide-angle camera (WAC) mounted to a pivoting platform. The camera system provided a complete map of the surface of Mercury at a resolution of 250 meters/pixel (820 ft/pixel),and images of regions of geologic interest at 20–50 meters/pixel (66–164 ft/pixel). Color imaging was possible only with the narrow-band filter wheel attached to the wide-angle camera. [34] [35]
Objectives: [34]
Filters [36] | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Measured gamma-ray emissions from the surface of Mercury to determine the planet's composition by detecting certain elements (oxygen,silicon,sulfur,iron,hydrogen,potassium,thorium,uranium) to a depth of 10 cm. [37] [38]
Objectives: [37]
Determined the hydrogen mineral composition to a depth of 40 cm by detecting low-energy neutrons resulting from the collision of cosmic rays with the minerals. [37] [38]
Objectives: [37]
Mapped mineral composition within the top millimeter of the surface on Mercury by detecting X-ray spectral lines from magnesium,aluminum,sulphur,calcium,titanium,and iron,in the 1–10 keV range. [39] [40]
Objectives: [39]
Measured the magnetic field around Mercury in detail to determine the strength and average position of the field. [41] [42]
Objectives: [41]
Provided detailed information regarding the height of landforms on the surface of Mercury by detecting the light of an infrared laser as the light bounced off the surface. [43] [44]
Objectives: [43]
Determined the characteristics of the tenuous atmosphere surrounding Mercury by measuring ultraviolet light emissions,and ascertained the prevalence of iron and titanium minerals on the surface by measuring the reflectance of infrared light. [45] [46]
Objectives: [45]
Measured the charged particles in the magnetosphere around Mercury using an energetic particle spectrometer (EPS) and the charged particles that come from the surface using a fast imaging plasma spectrometer (FIPS). [48] [49]
Objectives: [48]
Measured the gravity of Mercury and the state of the planetary core by utilizing the spacecraft's positioning data. [50] [51]
Objectives: [51]
Timeline of key events [2] [52] [53] [54] [55] [56] [57] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The MESSENGER probe was launched on August 3,2004,at 06:15:56 UTC by NASA from Space Launch Complex 17B at the Cape Canaveral Air Force Station in Florida,aboard a Delta II 7925 launch vehicle. The complete burn sequence lasted 57 minutes bringing the spacecraft into a heliocentric orbit,with a final velocity of 10.68 km/s (6.64 miles/s) and sending the probe into a 7.9 billion-kilometer (4.9 billion mi) trajectory that took 6 years,7 months and 16 days before its orbital insertion on March 18,2011. [29]
Traveling to Mercury and entering orbit requires an extremely large velocity change (see delta-v ) because Mercury's orbit is deep in the Sun's gravity well. On a direct course from Earth to Mercury,a spacecraft is constantly accelerated as it falls toward the Sun,and will arrive at Mercury with a velocity too high to achieve orbit without excessive use of fuel. For planets with an atmosphere,such as Venus and Mars,spacecraft can minimize their fuel consumption upon arrival by using friction with the atmosphere to enter orbit (aerocapture),or can briefly fire their rocket engines to enter into orbit followed by a reduction of the orbit by aerobraking. However,the tenuous atmosphere of Mercury is far too thin for these maneuvers. Instead,MESSENGER extensively used gravity assist maneuvers at Earth,Venus,and Mercury to reduce the speed relative to Mercury,then used its large rocket engine to enter into an elliptical orbit around the planet. The multi-flyby process greatly reduced the amount of propellant necessary to slow the spacecraft,but at the cost of prolonging the trip by many years and to a total distance of 7.9 billion kilometers (4.9 billion miles).
Several planned thruster firings en route to Mercury were unnecessary,because these fine course adjustments were performed using solar radiation pressure acting on MESSENGER's solar panels. [58] To further minimize the amount of necessary propellant,the spacecraft orbital insertion targeted a highly elliptical orbit around Mercury.
The elongated orbit had two other benefits:It allowed the spacecraft time to cool after the times it was between the hot surface of Mercury and the Sun,and also it allowed the spacecraft to measure the effects of solar wind and the magnetic fields of the planet at various distances while still allowing close-up measurements and photographs of the surface and exosphere. The spacecraft was originally scheduled to launch during a 12-day window that beginning May 11,2004. On March 26,2004,NASA announced the launch would be moved to a later,15-day launch window beginning July 30,2004,to allow for further testing of the spacecraft. [59] This change significantly altered the trajectory of the mission and delayed the arrival at Mercury by two years. The original plan called for three fly-by maneuvers past Venus,with Mercury orbit insertion scheduled for 2009. The trajectory was changed to include one Earth flyby,two Venus flybys,and three Mercury flybys before orbit insertion on March 18,2011. [60]
MESSENGER performed an Earth flyby one year after launch, on August 2, 2005, with the closest approach at 19:13 UTC at an altitude of 2,347 kilometers (1,458 statute miles) over central Mongolia. On December 12, 2005, a 524-second-long burn (Deep-Space Maneuver or DSM-1) of the large thruster adjusted the trajectory for the upcoming Venus flyby by 316 m/s. [61]
During the Earth flyby, the MESSENGER team imaged the Earth and Moon using MDIS and checked the status of several other instruments observing the atmospheric and surface compositions and testing the magnetosphere and determining that all instruments tested were working as expected. This calibration period was intended to ensure accurate interpretation of data when the spacecraft entered orbit around Mercury. Ensuring that the instruments functioned correctly at such an early stage in the mission allowed opportunity for multiple minor errors to be dealt with. [62]
The Earth flyby was used to investigate the flyby anomaly, where some spacecraft have been observed to have trajectories that differ slightly from those predicted. However no anomaly was observed in MESSENGER's flyby. [63]
On October 24, 2006, at 08:34 UTC, MESSENGER encountered Venus at an altitude of 2,992 kilometers (1,859 mi). During the encounter, MESSENGER passed behind Venus and entered superior conjunction, a period when Earth was on the exact opposite side of the Solar System, with the Sun inhibiting radio contact. For this reason, no scientific observations were conducted during the flyby. Communication with the spacecraft was reestablished in late November and performed a deep space maneuver on December 12, to correct the trajectory to encounter Venus in a second flyby. [64]
On June 5, 2007, at 23:08 UTC, MESSENGER performed a second flyby of Venus at an altitude of 338 km (210 mi), for the greatest velocity reduction of the mission. During the encounter, all instruments were used to observe Venus and prepare for the following Mercury encounters. The encounter provided visible and near-infrared imaging data of the upper atmosphere of Venus. Ultraviolet and X-ray spectrometry of the upper atmosphere were also recorded, to characterize the composition. The ESA's Venus Express was also orbiting during the encounter, providing the first opportunity for simultaneous measurement of particle-and-field characteristics of the planet. [65]
MESSENGER made a flyby of Mercury on January 14, 2008 (making its closest approach of 200 km above the surface of Mercury at 19:04:39 UTC), followed by a second flyby on October 6, 2008. [11] MESSENGER executed a final flyby on September 29, 2009, further slowing down the spacecraft. [12] [13] Sometime during the closest approach of the last flyby, the spacecraft entered safe mode. Although this had no effect on the trajectory necessary for later orbit insertion, it resulted in the loss of science data and images that were planned for the outbound leg of the fly-by. The spacecraft had fully recovered by about seven hours later. [66] One last deep space maneuver, DSM-5, was executed on November 24, 2009, at 22:45 UTC to provide the required 0.177 kilometres per second (0.110 mi/s) velocity change for the scheduled Mercury orbit insertion on March 18, 2011, marking the beginning of the orbital mission. [67]
The thruster maneuver to insert the probe into Mercury's orbit began at 00:45 UTC on March 18, 2011. The 0.9 km/s (0.5 mi./sec.) braking maneuver lasted about 15 minutes, with confirmation that the craft was in Mercury orbit received at 01:10 UTC on March 18 (9:10 PM, March 17 EDT). [57] Mission lead engineer Eric Finnegan indicated that the spacecraft had achieved a near-perfect orbit. [68]
MESSENGER's orbit was highly elliptical, taking it within 200 kilometers (120 miles) of Mercury's surface and then 15,000 km (9,300 miles) away from it every twelve hours. This orbit was chosen to shield the probe from the heat radiated by Mercury's hot surface. Only a small portion of each orbit was at a low altitude, where the spacecraft was subjected to radiative heating from the hot side of the planet. [69]
After MESSENGER's orbital insertion, an eighteen-day commissioning phase took place. The supervising personnel switched on and tested the craft's science instruments to ensure they had completed the journey without damage. [70] The commissioning phase "demonstrated that the spacecraft and payload [were] all operating nominally, notwithstanding Mercury's challenging environment." [33]
The primary mission began as planned on April 4, 2011, with MESSENGER orbiting Mercury once every twelve hours for an intended duration of twelve Earth months, the equivalent of two solar days on Mercury. [33] Principal Investigator Sean Solomon, then of the Carnegie Institution of Washington, said: "With the beginning today of the primary science phase of the mission, we will be making nearly continuous observations that will allow us to gain the first global perspective on the innermost planet. Moreover, as solar activity steadily increases, we will have a front-row seat on the most dynamic magnetosphere–atmosphere system in the Solar System." [33]
On October 5, 2011, the scientific results obtained by MESSENGER during its first six terrestrial months in Mercury's orbit were presented in a series of papers at the European Planetary Science Congress in Nantes, France. [20] Among the discoveries presented were the unexpectedly high concentrations of magnesium and calcium found on Mercury's nightside, and the fact that Mercury's magnetic field is offset far to the north of the planet's center. [20]
In November 2011, NASA announced that the MESSENGER mission would be extended by one year, allowing the spacecraft to observe the 2012 solar maximum. [1] Its extended mission began on March 17, 2012, and continued until March 17, 2013. Between April 16 and 20, 2012, MESSENGER carried out a series of thruster manoeuvres, placing it in an eight-hour orbit to conduct further scans of Mercury. [71]
In November 2012, NASA reported that MESSENGER had discovered a possibility of both water ice and organic compounds in permanently shadowed craters in Mercury's north pole. [21] [72] [73] In February 2013, NASA published the most detailed and accurate 3D map of Mercury to date, assembled from thousands of images taken by MESSENGER. [74] [75] MESSENGER completed its first extended mission on March 17, 2013, [2] and its second lasted until April 2015. [19] In November 2013, MESSENGER was among the numerous space assets that imaged Comet Encke (2P/Encke) and Comet ISON (C/2012 S1). [76] [77] [78] As its orbit began to decay in early 2015, MESSENGER was able to take highly detailed close-up photographs of ice-filled craters and other landforms at Mercury's north pole. [79] After the mission was completed, review of the radio ranging data provided the first measurement of the rate of mass loss from the Sun. [80]
On July 3, 2008, the MESSENGER team announced that the probe had discovered large amounts of water present in Mercury's exosphere, which was an unexpected finding. [83] In the later years of its mission, MESSENGER also provided visual evidence of past volcanic activity on the surface of Mercury, [84] as well as evidence for a liquid iron planetary core. [83] The probe also constructed the most detailed and accurate maps of Mercury to date, and furthermore discovered carbon-containing organic compounds and water ice inside permanently shadowed craters near the north pole. [85]
On February 18, 2011, a portrait of the Solar System was published on the MESSENGER website. The mosaic contained 34 images, acquired by the MDIS instrument during November 2010. All the planets were visible with the exception of Uranus and Neptune, due to their vast distances from the Sun. The MESSENGER "family portrait" was intended to be complementary to the Voyager family portrait, which was acquired from the outer Solar System by Voyager 1 on February 14, 1990. [86]
On October 8, 2014 from 9:18 UTC to 10:18 UTC, MESSENGER took 31 images, taken two minutes apart, of the Earth and the Moon, as the Moon underwent a total lunar eclipse. MESSENGER was 107 million kilometers (66 million miles) from the Earth at the time of the lunar eclipse. The Earth is about 5 pixels across and the Moon is just over 1 pixel across in the field of view of the NAC, with about 40 pixels distance between them. The images are zoomed by a factor of two and the Moon's brightness has been increased by a factor of about 25 to show its disappearance more clearly. This was the first observation of a lunar eclipse, of Earth's Moon, in history to be viewed from another planet. [87] [17]
After running out of propellant for course adjustments, MESSENGER entered its expected terminal phase of orbital decay in late 2014. The spacecraft's operation was extended by several weeks by exploiting its remaining supply of helium gas, which was used to pressurize its propellant tanks, as reaction mass. [88] MESSENGER continued studying Mercury during its decay period. [3] The spacecraft crashed onto the surface of Mercury on April 30, 2015, at 3:26 p.m. EDT (19:26 GMT), at a velocity of 14,080 km/h (8,750 mph), probably creating a crater in the planet's surface approximately 16 m (52 ft) wide. [18] [89] The spacecraft was estimated to have impacted at 54.4° N, 149.9° W on Suisei Planitia, near the crater Janáček. [90] The crash occurred at a place not visible from Earth at the time, and thus was not detected by any observers or instruments. NASA confirmed the end of the MESSENGER mission at 3:40 p.m. EDT (19:40 GMT) after NASA's Deep Space Network did not detect the spacecraft's reemergence from behind Mercury. [89] [91]
Galileo was an American robotic space program that studied the planet Jupiter and its moons, as well as several other Solar System bodies. Named after the Italian astronomer Galileo Galilei, the Galileo spacecraft consisted of an orbiter and an atmospheric entry probe. It was delivered into Earth orbit on October 18, 1989, by Space ShuttleAtlantis on the STS-34 mission, and arrived at Jupiter on December 7, 1995, after gravity assist flybys of Venus and Earth, and became the first spacecraft to orbit Jupiter. The spacecraft then launched the first probe to directly measure its atmosphere. Despite suffering major antenna problems, Galileo achieved the first asteroid flyby, of 951 Gaspra, and discovered the first asteroid moon, Dactyl, around 243 Ida. In 1994, Galileo observed Comet Shoemaker–Levy 9's collision with Jupiter.
Mercury is the first planet from the Sun and the smallest in the Solar System. In English, it is named after the ancient Roman god Mercurius (Mercury), god of commerce and communication, and the messenger of the gods. Mercury is classified as a terrestrial planet, with roughly the same surface gravity as Mars. The surface of Mercury is heavily cratered, as a result of countless impact events that have accumulated over billions of years. Its largest crater, Caloris Planitia, has a diameter of 1,550 km (960 mi), which is about one-third the diameter of the planet. Similarly to the Earth's Moon, Mercury's surface displays an expansive rupes system generated from thrust faults and bright ray systems formed by impact event remnants.
The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System – visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.
Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is currently carried out mainly by astronomers with telescopes, its physical exploration is conducted both by uncrewed robotic space probes and human spaceflight. Space exploration, like its classical form astronomy, is one of the main sources for space science.
Mariner 10 was an American robotic space probe launched by NASA on 3 November 1973, to fly by the planets Mercury and Venus. It was the first spacecraft to perform flybys of multiple planets.
A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.
A lander is a spacecraft that descends towards, then comes to rest on the surface of an astronomical body other than Earth. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.
New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern, the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System.
The Discovery Program is a series of Solar System exploration missions funded by the U.S. National Aeronautics and Space Administration (NASA) through its Planetary Missions Program Office. The cost of each mission is capped at a lower level than missions from NASA's New Frontiers or Flagship Programs. As a result, Discovery missions tend to be more focused on a specific scientific goal rather than serving a general purpose.
BepiColombo is a joint mission of the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) to the planet Mercury. The mission comprises two satellites launched together: the Mercury Planetary Orbiter (MPO) and Mio. The mission will perform a comprehensive study of Mercury, including characterization of its magnetic field, magnetosphere, and both interior and surface structure. It was launched on an Ariane 5 rocket on 20 October 2018 at 01:45 UTC, with an arrival at Mercury planned for November 2026, after a flyby of Earth, two flybys of Venus, and six flybys of Mercury. The mission was approved in November 2009, after years in proposal and planning as part of the European Space Agency's Horizon 2000+ programme; it is the last mission of the programme to be launched.
The geology of Mercury is the scientific study of the surface, crust, and interior of the planet Mercury. It emphasizes the composition, structure, history, and physical processes that shape the planet. It is analogous to the field of terrestrial geology. In planetary science, the term geology is used in its broadest sense to mean the study of the solid parts of planets and moons. The term incorporates aspects of geophysics, geochemistry, mineralogy, geodesy, and cartography.
Observations of the planet Venus include those in antiquity, telescopic observations, and from visiting spacecraft. Spacecraft have performed various flybys, orbits, and landings on Venus, including balloon probes that floated in the atmosphere of Venus. Study of the planet is aided by its relatively close proximity to the Earth, compared to other planets, but the surface of Venus is obscured by an atmosphere opaque to visible light.
The exploration of Mercury has a minor role in the space interests of the world. It is the least explored inner planet. As of 2015, the Mariner 10 and MESSENGER missions have been the only missions that have made close observations of Mercury. MESSENGER made three flybys before entering orbit around Mercury. A third mission to Mercury, BepiColombo, a joint mission between the Japan Aerospace Exploration Agency (JAXA) and the European Space Agency, is to include two probes. MESSENGER and BepiColombo are intended to gather complementary data to help scientists understand many of the mysteries discovered by Mariner 10's flybys.
Mercury, being the closest to the Sun, with a weak magnetic field and the smallest mass of the recognized terrestrial planets, has a very tenuous and highly variable atmosphere containing hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10−14 bar. The exospheric species originate either from the Solar wind or from the planetary crust. Solar light pushes the atmospheric gases away from the Sun, creating a comet-like tail behind the planet.
Mercury's magnetic field is approximately a magnetic dipole, apparently global, on the planet of Mercury. Data from Mariner 10 led to its discovery in 1974; the spacecraft measured the field's strength as 1.1% that of Earth's magnetic field. The origin of the magnetic field can be explained by dynamo theory. The magnetic field is strong enough near the bow shock to slow the solar wind, which induces a magnetosphere.
Europa Clipper is a space probe developed by NASA to study Europa, a Galilean moon of Jupiter. It was launched on October 14, 2024. The spacecraft will use gravity assists from Mars on March 1, 2025, and Earth on December 3, 2026, before arriving at Europa in April 2030. The spacecraft will then perform a series of flybys of Europa while in orbit around Jupiter.
The following outline is provided as an overview of and topical guide to Venus:
{{cite journal}}
: CS1 maint: numeric names: authors list (link)