Applied Physics Laboratory

Last updated

Applied Physics Laboratory
JHU APL logo.png
Established1942
Research typeUnclassified / classified
Budget $2.09 billion [1]
Director Dr. Ralph Semmel
Staff 8,800 [2]
Location Laurel, Maryland, U.S.
Operating agency
Johns Hopkins University
Website www.jhuapl.edu

The Johns Hopkins University Applied Physics Laboratory (or simply Applied Physics Laboratory, or APL) is a not-for-profit university-affiliated research center (UARC) in Howard County, Maryland. It is affiliated with Johns Hopkins University and employs 8,700 people as of 2024. [2] APL is the nation's largest UARC. [3]

Contents

The lab serves as a technical resource for the Department of Defense, NASA, and other government agencies. APL has developed numerous systems and technologies in the areas of air and missile defense, surface and undersea naval warfare, computer security, and space science and spacecraft construction. [4] While APL provides research and engineering services to the government, it is not a traditional defense contractor, as it is a UARC and a division of Johns Hopkins University. APL is a scientific and engineering research and development division, rather than an academic division, of Johns Hopkins.

Hopkins' Whiting School of Engineering offers part-time graduate programs for Lab staff members through its Engineering for Professionals program. Courses are taught at seven locations in the Baltimore-Washington Metropolitan Area, including the APL Education Center. [5]

History

APL was created in 1942 during World War II under the Office of Scientific Research and Development's Section T [6] as part of the Government's effort to mobilize the nation's science and engineering expertise within its universities. Its founding director was Merle Anthony Tuve, who led Section T throughout the war. Section T was created on August 17, 1940. [7] According to the official history [8] of the Office of Scientific Research and Development, Scientists Against Time, APL was the name of Section T's main laboratory from 1942 onward, not the name of the organization overall. [9] Section T's Applied Physics Laboratory succeeded in developing the variable-time proximity fuze [10] that played a significant role in the Allied victory. [11] In response to the fuze's success, the APL created the MK 57 gun director in 1944. Pleased with the APL's work, the Navy then tasked it with the mission to find a way to negate guided missile threats. From there on, the APL became very involved in wartime research. [12] Expected to disband at the end of the war, APL instead became heavily involved in the development of guided missile technology for the Navy. At governmental request, the University continued to maintain the Laboratory as a public service.

APL was originally located in Silver Spring, Maryland in a used-car garage [13] at the Wolfe Building at 8621 Georgia Avenue. [14] [15] APL began moving to Laurel in 1954, with the construction of a two million dollar building and a $700,000 wing expansion in 1956. [16] The final staff transitioned to the new facility in 1975. [13] [17] Before moving to Laurel, APL also maintained the "Forest Grove Station," north of Silver Spring on Georgia Avenue near today's Forest Glen Metro, [18] which included a hypersonic wind tunnel. The Forest Grove Station was vacated and torn down in 1963 and flight simulations were moved to Laurel. In the 1960s, APL built a mobile automaton called the Johns Hopkins Beast.

The Laboratory's name comes from its origins in World War II, but APL's major strengths are systems engineering and technology application. More than three-quarters of the staff are technical professionals, and 25% have computer science and math degrees. APL conducts programs in fundamental and applied research; exploratory and advanced development; test and evaluation; and systems engineering and integration.

Wartime contributions

During the 1950s and the 1960s APL worked with the US Navy in the Operation Bumblebee Program on the Talos missile, Tartar missile, Terrier, and RIM-2 Terrier Surface to Air Missile systems. The follow-on RIM-50 Typhon Missile Project, based on improved Talos and Tartar Missiles, while successful, was cancelled in 1963 due to high costs and was eventually developed into the now well-known Aegis Combat System based on an improved Terrier.

In 1990, APL became involved with Operation Desert Storm and was involved in the Gulf Crisis Room[ clarification needed ] among other efforts. In the same decade (1992), APL, along with Johns Hopkins University, developed an algorithm that allowed for automatic mammogram analysis. [12]

Pershing

In 1965, the US Army contracted with APL to develop and implement a test and evaluation program for the Pershing missile systems. [19] APL developed the Pershing Operational Test Program (OTP), provided technical support to the Pershing Operational Test Unit (POTU), identified problem areas and improved the performance and survivability of the Pershing systems. [20]

Campus

The modern Applied Physics Laboratory is located in Laurel, Maryland, and spans 461 acres with more than 30 buildings on site. Additional auxiliary campuses exist in the surrounding areas. [21] The campus includes multiple cutting-edge innovation and collaboration spaces as well as state-of-the-art labs and test facilities. [22]

In 2021, APL opened an interdisciplinary research center, known as Building 201, with 263,000 square feet of space, a 200-person auditorium and more than 90,000 square feet of specialized laboratory space. [3] The building also includes a four-story atrium filled with natural light, a STEM Center and a combination of 100 huddle, conference and auditorium breakout rooms. [23]

APL hired its first full-time sustainability manager in 2022. [24]

Education and internships

APL is also home to a Johns Hopkins graduate program in engineering and applied sciences, called Engineering for Professionals. [25] Courses are taught at seven locations in the Baltimore-Washington Metropolitan Area, including the APL Education Center. [5]

APL's STEM includes several internships and programs, including the Maryland MESA program, which is an after-school program for students in grades 3-12; APL STEM in the Community, which focuses on STEM community outreach; the STEM Academy, which is an after-school course program for middle and high school students (grades 8-12); and APL's Student Program to Inspire, Relate and Enrich (ASPIRE), which allows high school juniors and seniors to experience and explore STEM careers before college. [26] [27]

Research

As of APL's 80th anniversary in 2022, there were hundreds of projects spanning the Lab's 12 mission areas, that focus on solving complex research, engineering and analytical problems that present critical challenges to the United States. [28] Projects span from those in APL's more traditional areas of work, including air and missile defense, undersea warfare, to newer projects such as homeland security, artificial intelligence and cyber operations. [12]

Defense

The U.S. Navy continues to be APL's primary long-term sponsor. The Laboratory performs work for the Missile Defense Agency, the Department of Homeland Security, intelligence agencies, the Defense Advanced Research Projects Agency (DARPA), and others. The Laboratory supports NASA through space science, spacecraft design and fabrication, and mission operations. APL has made significant contributions in the areas of air defense, strike and power projection, submarine security, antisubmarine warfare, strategic systems evaluation, command and control, distributed information and display systems, sensors, information processing, and space systems.

Space

Alan Stern celebrating the successful flyby of the Pluto system by New Horizons in 2015 in the APL Mission Operations Center. Alan Stern and New Horizons Team Celebrate Pluto Flyby.jpg
Alan Stern celebrating the successful flyby of the Pluto system by New Horizons in 2015 in the APL Mission Operations Center.

APL has built and operated many spacecraft, including the Transit navigation system, Geosat, ACE, TIMED, CONTOUR, MESSENGER , Van Allen Probes, [29] the New Horizons mission to Pluto, the Parker Solar Probe mission to the outer corona of the Sun, [30] and STEREO. [29]

In the early 1990s APL began building robotic space probes. It won the contract to build NEAR for one third the price that Jet Propulsion Laboratory (JPL), NASA's traditional supplier, estimated. APL's bid caused NASA to create the Discovery Program to solicit competing proposals for other missions. In 2019, the APL-proposed Dragonfly mission was selected as the fourth NASA New Frontiers mission. [31] [32] Dragonfly is a relocatable lander in an X8 octocopter configuration that will explore Saturn's moon Titan by flying between landing sites to move around the moon's surface. In November 2021, APL launched the Double Asteroid Redirection Test (DART) mission, which struck the smaller body of a binary asteroid system in September 2022 and was the first NASA planetary defense mission. [33]

The asteroid 132524 APL was named in honor of APL after a flyby by the New Horizons spacecraft.

Prosthetics

In 2014, APL made history with the successful use of the Modular Prosthetic Limb — a fully artificial articulated arm and hand — by a bilateral shoulder-level amputee. APL used pattern recognition algorithms to track which muscles were contracting and enable the prosthetics to move in conjunction with the amputee's body. [34]

Similar technology was used in 2016 for a demonstration in which a paralyzed man was able to "fist-bump" Barack Obama using signals sent from an implanted brain chip. [35] The limb returned sensory feedback from the arm to the wearer's brain. In 2023, APL announced that researchers have developed one of the world's smallest, most intense and fastest refrigeration devices, the wearable thin-film thermoelectric cooler (TFTEC), and teamed with neuroscientists to help amputees perceive a sense of temperature with their phantom limbs. [36] The technology won an R&D 100 award in 2023. [37]

Drones

APL researches and produces unmanned aerial vehicles for the US military. [38] One of its most recent projects is an unmanned aerial swarm that can be controlled by a single operator on the ground. [39]

See also

Related Research Articles

<span class="mw-page-title-main">James Van Allen</span> American space scientist

James Alfred Van Allen was an American space physicist at the University of Iowa. He was instrumental in establishing the field of magnetospheric research in space.

<i>New Horizons</i> First spacecraft to visit Pluto and the Kuiper Belt (2006–Present)

New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern, the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System.

<span class="mw-page-title-main">Michael D. Griffin</span> American physicist and aerospace engineer (born 1949)

Michael Douglas Griffin is an American physicist and aerospace engineer who served as the Under Secretary of Defense for Research and Engineering from 2018 to 2020. He previously served as Deputy of Technology for the Strategic Defense Initiative, and as Administrator of NASA from April 13, 2005, to January 20, 2009. As NASA Administrator Griffin oversaw such areas as private spaceflight, future human spaceflight to Mars, and the fate of the Hubble telescope.

A University Affiliated Research Center (UARC) is a strategic United States Department of Defense (DoD) research center associated with a university. UARCs are formally established by the Under Secretary of Defense for Research and Engineering. UARCs were developed to ensure that essential engineering and technology capabilities of particular importance to the DoD are maintained. They have many similarities with Federally Funded Research and Development Centers, including sole source funding under the authority of 10 U.S.C. § 2304(c)(3)(B). However, UARCs are allowed to compete for other science and technology work, except when it is prohibited by their contracts.

<span class="mw-page-title-main">132524 APL</span> Asteroid visited by New Horizons

132524 APL (provisional designation 2002 JF56) is a small background asteroid in the intermediate asteroid belt. It was discovered by Lincoln Near-Earth Asteroid Research in May 2002, and imaged by the New Horizons space probe on its flyby in June 2006, when it was passing through the asteroid belt. The stony S-type asteroid measures approximately 2.5 kilometers (1.6 miles) in diameter.

<span class="mw-page-title-main">Michael Ryschkewitsch</span>

Michael Ryschkewitsch is the former Space Exploration Sector Head at the Applied Physics Laboratory (APL). He formerly served as the Chief Engineer of the United States National Aeronautics and Space Administration.

<span class="mw-page-title-main">Chemical Propulsion Information Analysis Center</span> DoD sponsored Information Analysis Center

The Chemical Propulsion Information Analysis Center (CPIAC) is one of several United States Department of Defense (DoD) sponsored Information Analysis Centers (IACs), administered by the Defense Technical Information Center (DTIC). CPIAC is the oldest IAC, having been in continuous operation since 1946 when it was founded as the Rocket Propellant Information Agency as part of the Johns Hopkins University's Applied Physics Laboratory. Currently CPIAC is operated by The Johns Hopkins University, Whiting School of Engineering. IACs are part of the DoD’s Scientific and Technical Information Program (STIP) prescribed by DoD Directive 3200.12 and are chartered under DoD Instruction 3200.14-E5.

<span class="mw-page-title-main">Parker Solar Probe</span> NASA robotic space probe of the outer corona of the Sun

The Parker Solar Probe is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii from the center of the Sun, and by 2025 will travel, at closest approach, as fast as 690,000 km/h (430,000 mph) or 191 km/s, which is 0.064% the speed of light. It is the fastest object ever built.

<span class="mw-page-title-main">Stamatios Krimigis</span> Greek-American space exploration scientist (b. 1938)

Stamatios (Tom) Mike Krimizis is a Greek-American scientist in space exploration. He has contributed to many of the United States' unmanned space exploration programs of the Solar System and beyond. He has contributed to exploration missions to almost every planet of the Solar System. In 1999, the International Astronomical Union named the asteroid 8323 Krimigis in his honor.

Frederick Stucky Billig was an American aerospace engineer who was a pioneer in the development of scramjet propulsion.

<span class="mw-page-title-main">Rob Strain</span>

Robert D. "Rob" Strain is the former Director of NASA's Goddard Space Flight Center. Strain held that post from August 4, 2008, through March 5, 2012. Strain announced in January 2012 that he will retire from NASA and return to private industry.

Nancy Chabot is a planetary scientist at the Johns Hopkins University Applied Physics Laboratory.

Elizabeth "Zibi" Turtle is a planetary scientist at the Johns Hopkins University Applied Physics Laboratory.

<span class="mw-page-title-main">Alice Bowman</span> American engineering manager

Alice Bowman is the Mission Operations Manager for the New Horizons mission to Pluto. She is the first woman to fill that role at the Applied Physics Laboratory, taking on the position in 2002 specifically for the duration of the three billion-mile space journey.

<span class="mw-page-title-main">Pershing Operational Test Unit</span>

The Pershing Operational Test Unit (POTU) was the U.S. Army agency responsible for the operational testing of the Pershing 1 Field Artillery Missile System, the Pershing 1a Field Artillery Missile System and the Pershing II Weapon System. Created in 1965, POTU was assigned to United States Army Europe and located in Heidelberg, Germany. Personnel consisted of one lieutenant colonel, two majors, one captain, two warrant officers and four non-commissioned officers.

<span class="mw-page-title-main">Double Asteroid Redirection Test</span> 2021 NASA planetary defense mission

Double Asteroid Redirection Test (DART) was a NASA space mission aimed at testing a method of planetary defense against near-Earth objects (NEOs). It was designed to assess how much a spacecraft impact deflects an asteroid through its transfer of momentum when hitting the asteroid head-on. The selected target asteroid, Dimorphos, is a minor-planet moon of the asteroid Didymos; neither asteroid poses an impact threat to Earth, but their joint characteristics made them an ideal benchmarking target. Launched on 24 November 2021, the DART spacecraft successfully collided with Dimorphos on 26 September 2022 at 23:14 UTC about 11 million kilometers from Earth. The collision shortened Dimorphos' orbit by 32 minutes, greatly in excess of the pre-defined success threshold of 73 seconds. DART's success in deflecting Dimorphos was due to the momentum transfer associated with the recoil of the ejected debris, which was substantially larger than that caused by the impact itself.

<span class="mw-page-title-main">Ralph Semmel</span> American engineer and computer scientist

Ralph D. Semmel is an American engineer and computer scientist. He became the eighth director of the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland on July 1, 2010. He announced that he will step down from his role in July 2025.

<span class="mw-page-title-main">Andre Douglas</span> Engineer and NASA astronaut

Andre Douglas is an American systems engineer and NASA astronaut.

<span class="mw-page-title-main">Timeline of New Horizons</span>

Timeline for the New Horizons interplanetary space probe lists the significant events of the launch, transition phases as well as subsequent significant operational mission events; by date and brief description.

<span class="mw-page-title-main">Polar BEAR</span> 1986 U.S. space mission

Polar BEAR, short for Polar Beacon Experiment and Auroral Research was a 1986 U.S. military space mission. Also known as STP P87-1 or STP P87-A, the craft was built for the Air Force by Johns Hopkins University's Applied Physics Laboratory (APL).

References

  1. "2022 Annual Report" (PDF). Johns Hopkins University Applied Physics Laboratory. Retrieved January 6, 2024.
  2. 1 2 "About APL". Johns Hopkins University Applied Physics Laboratory. Retrieved September 4, 2024.
  3. 1 2 Hogan, Governor Larry (October 20, 2021). "Gov. Hogan Celebrates Grand Opening Of New Research Facility At Johns Hopkins University Applied Physics Laboratory". The BayNet. Retrieved August 29, 2023.
  4. "About APL". Archived from the original on January 20, 2016. Retrieved January 17, 2016.
  5. 1 2 "APL Education Center". Johns Hopkins University Applied Physics Laboratory. Archived from the original on April 20, 2013. Retrieved October 15, 2008.
  6. Baxter, James Phinney (1946). Scientists Against Time. Little, Brown. ISBN   9780598553881.
  7. Holmes, Jamie (2020). 12 Seconds of Silence: How a Team of Inventors, Tinkerers, and Spies Took Down a Nazi Superweapon. Houghton Mifflin Harcourt. p. 44. ISBN   978-1-328-46012-7.
  8. "Records of the office of Scientific Research and Development". National Archives. August 15, 2016. Retrieved September 1, 2020.
  9. Baxter, James Phinney (1946). Scientists Against Time. Little, Brown. p. 230. ISBN   9780598553881.
  10. Simpson, Joanne (April 2000). "The Funny Little Fuze with Devastating Aim". Johns Hopkins Magazine. Johns Hopkins University.
  11. "Our History". JHU APL. Johns Hopkins University. Archived from the original on October 15, 2013. Retrieved March 12, 2015.
  12. 1 2 3 "APL at 70". JHU APL. 2012. Archived from the original on October 15, 2013. Retrieved March 12, 2015.
  13. 1 2 www.jhuapl.edu https://web.archive.org/web/20060911232526/http://www.jhuapl.edu/techdigest/td2104/hagler.pdf. Archived from the original (PDF) on September 11, 2006.{{cite web}}: Missing or empty |title= (help)
  14. McCoy, Jerry A; Society, Silver Spring Historical (November 2005). Historic Silver Spring. Arcadia. ISBN   978-0-7385-4188-4.
  15. Gibson, R. E. "Reflections on the Origin and Early History of the Applied Physics Laboratory" (PDF). jhuapl.edu.
  16. "Johns Hopkins Lets Contract in Md". The Washington Post. March 27, 1955.
  17. The Johns Hopkins Gazette: March 25, 2002
  18. Google Maps
  19. Mentzer Jr., William R. (1998). "Test and Evaluation of Land-Mobile Missile Systems" (PDF). Johns Hopkins APL Technical Digest. Johns Hopkins University. Archived from the original (PDF) on March 4, 2016. Retrieved December 2, 2014.
  20. Lyman, Donald R. (May–June 1977). "POTU: Testing Pershing in Europe and CONUS" (PDF). Field Artillery Journal: 15–17.
  21. "About:JHU|APL".
  22. "Labs and Facilities | Johns Hopkins University Applied Physics Laboratory". www.jhuapl.edu. Retrieved August 29, 2023.
  23. "Johns Hopkins APL Ushers in New Era of Innovation, Collaboration and Research Capabilities | Johns Hopkins University Applied Physics Laboratory". www.jhuapl.edu. Retrieved August 29, 2023.
  24. "First Full-Time Sustainability Manager Hired at APL" (PDF). Johns Hopkins University 2023 Sustainability Report: 15. 2023.
  25. "JHU Graduate Program in Engineering and Applied Sciences". JHU APL. Archived from the original on April 20, 2013. Retrieved March 24, 2015.
  26. "STEM". secwww.jhuapl.edu. Retrieved August 29, 2023.
  27. "At Applied Physics Lab in Laurel, a Howard engineer has a mission to connect kids of color, girls with STEM". Baltimore Sun. February 26, 2020. Retrieved August 29, 2023.
  28. "Johns Hopkins APL Rings in 80 Years". JHUAPL. Retrieved December 21, 2022.
  29. 1 2 "Space Press Releases". JHU APL. Retrieved March 12, 2015.
  30. "Parker Solar Probe: A Nasa Mission to Touch the Sun". JHU APL. March 18, 2014. Retrieved August 18, 2017.
  31. NASA selects Titan drone for next New Frontiers mission. Jeff Foust, Space News. June 27, 2019. Retrieved July 6, 2019.
  32. NASA's Dragonfly Will Fly Around Titan Looking for Origins, Signs of Life. NASA. June 27, 2019. Retrieved July 6, 2019.
  33. https://dart.jhuapl.edu/ Double Asteroid Redirection Test project site
  34. "Amputee Makes History with APL's Modular Prosthetic Limb". JHU APL. December 16, 2014. Archived from the original on December 5, 2017. Retrieved March 12, 2015.
  35. "Watch Obama fist bump a robotic arm powered by a brain chip". NBC News. Retrieved July 21, 2018.
  36. Ford, Celia. "How to Make Bionic Limbs (Literally) Very Cool". Wired. ISSN   1059-1028 . Retrieved August 29, 2023.
  37. Heney, Paul (August 22, 2023). "R&D 100 Winners for 2023 are announced". Research & Development World. Retrieved August 29, 2023.
  38. "Drone Research and Robotic Warfare: The Hopkins Connection". Today's Announcements. Johns Hopkins University. April 20, 2012. Retrieved August 13, 2012.
  39. Manufacturing Group (August 13, 2012). "Demonstrating Expanded Control of UAV Swarm". Aerospace Manufacturing and Design. Boeing and the Johns Hopkins University Applied Physics Laboratory (JHU/APL) have demonstrated that an operator on the ground, using only a laptop and a military radio, can command an unmanned aerial vehicle (UAV) "swarm". Despite limited flight training, the operator was able to connect with autonomous UAVs, task them and obtain information without using a ground control station. [...] The demonstrations are conducted under a collaborative agreement between Boeing and JHU/APL, a University Affiliated Research Center and a division of Johns Hopkins University that has been addressing critical national challenges through the innovative application of science and technology for nearly 70 years. It maintains a staff of about 5,000 on its Laurel, Maryland, campus.

39°09′55″N76°53′50″W / 39.16528°N 76.89722°W / 39.16528; -76.89722