In aerodynamics, a hypersonic speed is one that exceeds five times the speed of sound, often stated as starting at speeds of Mach 5 and above. [1]
The precise Mach number at which a craft can be said to be flying at hypersonic speed varies, since individual physical changes in the airflow (like molecular dissociation and ionization) occur at different speeds; these effects collectively become important around Mach 5–10. The hypersonic regime can also be alternatively defined as speeds where specific heat capacity changes with the temperature of the flow as kinetic energy of the moving object is converted into heat. [2]
While the definition of hypersonic flow can be quite vague and is generally debatable (especially due to the absence of discontinuity between supersonic and hypersonic flows), a hypersonic flow may be characterized by certain physical phenomena that can no longer be analytically discounted as in supersonic flow.[ citation needed ] The peculiarities in hypersonic flows are as follows:[ citation needed ]
As a body's Mach number increases, the density behind a bow shock generated by the body also increases, which corresponds to a decrease in volume behind the shock due to conservation of mass. Consequently, the distance between the bow shock and the body decreases at higher Mach numbers. [3]
As Mach numbers increase, the entropy change across the shock also increases, which results in a strong entropy gradient and highly vortical flow that mixes with the boundary layer.
A portion of the large kinetic energy associated with flow at high Mach numbers transforms into internal energy in the fluid due to viscous effects. The increase in internal energy is realized as an increase in temperature. Since the pressure gradient normal to the flow within a boundary layer is approximately zero for low to moderate hypersonic Mach numbers, the increase of temperature through the boundary layer coincides with a decrease in density. This causes the bottom of the boundary layer to expand, so that the boundary layer over the body grows thicker and can often merge with the shock wave near the body leading edge.[ citation needed ]
High temperatures due to a manifestation of viscous dissipation cause non-equilibrium chemical flow properties such as vibrational excitation and dissociation and ionization of molecules resulting in convective and radiative heat-flux.[ citation needed ]
Although "subsonic" and "supersonic" usually refer to speeds below and above the local speed of sound respectively, aerodynamicists often use these terms to refer to particular ranges of Mach values. When an aircraft approaches transonic speeds (around Mach 1), it enters a special regime. The usual approximations based on the Navier–Stokes equations, which work well for subsonic designs, start to break down because, even in the freestream, some parts of the flow locally exceed Mach 1. So, more sophisticated methods are needed to handle this complex behavior. [4]
The "supersonic regime" usually refers to the set of Mach numbers for which linearised theory may be used; for example, where the (air) flow is not chemically reacting and where heat transfer between air and vehicle may be reasonably neglected in calculations. Generally, NASA defines "high" hypersonic as any Mach number from 10 to 25, and re-entry speeds as anything greater than Mach 25. Among the spacecraft operating in these regimes are returning Soyuz and Dragon space capsules; the previously-operated Space Shuttle; various reusable spacecraft in development such as SpaceX Starship and Rocket Lab Electron; and (theoretical) spaceplanes.[ citation needed ]
In the following table, the "regimes" or "ranges of Mach values" are referenced instead of the usual meanings of "subsonic" and "supersonic".[ citation needed ]
Regime | Mach No | Speed | General characteristics | Aircraft | Missiles/warheads |
---|---|---|---|---|---|
Subsonic | [0–0.8) | <614 mph (988 km/h; 274 m/s) | Most often propeller-driven and commercial turbofan aircraft with high-aspect-ratio (slender) wings, and rounded features like the nose and leading edges. The subsonic speed range is that range of speeds within which, all of the airflow over an aircraft is less than Mach 1. The critical Mach number (Mcrit) is lowest free stream Mach number at which airflow over any part of the aircraft first reaches Mach 1. So the subsonic speed range includes all speeds that are less than Mcrit. | All commercial aircraft | — |
Transonic | [0.8–1.2) | 614–921 mph (988–1,482 km/h; 274–412 m/s) | Transonic aircraft nearly always have swept wings that delay drag-divergence and supercritical wings to delay the onset of wave drag and often feature designs adhering to the principles of the Whitcomb area rule. The transonic speed range is that range of speeds within which the airflow over different parts of an aircraft is between subsonic and supersonic. So the regime of flight from Mcrit up to Mach 1.3 is called the transonic range.[ citation needed ] |
| — |
Supersonic | [1.2–5) | 921–3,836 mph (1,482–6,173 km/h; 412–1,715 m/s) | The supersonic speed range is that range of speeds within which all of the airflow over an aircraft is supersonic (more than Mach 1). But airflow meeting the leading edges is initially decelerated, so the free stream speed must be slightly greater than Mach 1 to ensure that all of the flow over the aircraft is supersonic. It is commonly accepted that the supersonic speed range starts at a free stream speed greater than Mach 1.3. Aircraft designed to fly at supersonic speeds show large differences in their aerodynamic design because of the radical differences in the behavior of flows above Mach 1. Sharp edges, thin aerofoil-sections, and all-moving tailplane/canards are common. Modern combat aircraft must compromise in order to maintain low-speed handling; "true" supersonic designs, generally incorporating delta wings, are rarer. |
| — |
Hypersonic | [5–10) | 3,836–7,673 mph (6,173–12,348 km/h; 1,715–3,430 m/s) | Cooled nickel or titanium skin; small wings. The design is highly integrated, instead of assembled from separate independently-designed components, due to the domination of interference effects, where small changes in any one component will cause large changes in air flow around all other components, which in turn affects their behavior. The result is that no one component can be designed without knowing how all other components will affect all of the air flows around the craft, and any changes to any one component may require a redesign of all other components simultaneously[ citation needed ]. |
|
|
High-Hypersonic | [10–25) | 7,673–19,180 mph (12,348–30,867 km/h; 3,430–8,574 m/s) | Thermal control becomes a dominant design consideration. Structure must either be designed to operate hot, or be protected by special silicate tiles or similar. Chemically reacting flow can also cause corrosion of the vehicle's skin, with free-atomic oxygen featuring in very high-speed flows. Hypersonic designs are often forced into blunt configurations because of the aerodynamic heating rising with a reduced radius of curvature. | — | |
Re-entry speeds | ≥25 | ≥19,180 mph (30,870 km/h; 8,570 m/s) | Ablative heat shield; small or no wings; blunt shape. See reentry capsule. |
|
|
The categorization of airflow relies on a number of similarity parameters, which allow the simplification of a nearly infinite number of test cases into groups of similarity. For transonic and compressible flow, the Mach and Reynolds numbers alone allow good categorization of many flow cases.[ citation needed ]
Hypersonic flows, however, require other similarity parameters. First, the analytic equations for the oblique shock angle become nearly independent of Mach number at high (~>10) Mach numbers. Second, the formation of strong shocks around aerodynamic bodies means that the freestream Reynolds number is less useful as an estimate of the behavior of the boundary layer over a body (although it is still important). Finally, the increased temperature of hypersonic flow mean that real gas effects become important. Research in hypersonics is therefore often called aerothermodynamics, rather than aerodynamics. [5]
The introduction of real gas effects means that more variables are required to describe the full state of a gas. Whereas a stationary gas can be described by three variables (pressure, temperature, adiabatic index), and a moving gas by four (flow velocity), a hot gas in chemical equilibrium also requires state equations for the chemical components of the gas, and a gas in nonequilibrium solves those state equations using time as an extra variable. This means that for nonequilibrium flow, something between 10 and 100 variables may be required to describe the state of the gas at any given time. Additionally, rarefied hypersonic flows (usually defined as those with a Knudsen number above 0.1) do not follow the Navier–Stokes equations.[ citation needed ]
Hypersonic flows are typically categorized by their total energy, expressed as total enthalpy (MJ/kg), total pressure (kPa-MPa), stagnation pressure (kPa-MPa), stagnation temperature (K), or flow velocity (km/s).[ citation needed ]
Wallace D. Hayes developed a similarity parameter, similar to the Whitcomb area rule, which allowed similar configurations to be compared.[ citation needed ] In the study of hypersonic flow over slender bodies, the product of the freestream Mach number and the flow deflection angle , known as the hypersonic similarity parameter:is considered to be an important governing parameter. [5] The slenderness ratio of a vehicle , where is the diameter and is the length, is often substituted for .
Hypersonic flow can be approximately separated into a number of regimes. The selection of these regimes is rough, due to the blurring of the boundaries where a particular effect can be found.[ citation needed ]
In this regime, the gas can be regarded as an ideal gas. Flow in this regime is still Mach number dependent. Simulations start to depend on the use of a constant-temperature wall, rather than the adiabatic wall typically used at lower speeds. The lower border of this region is around Mach 5, where ramjets become inefficient, and the upper border around Mach 10–12.[ citation needed ]
This is a subset of the perfect gas regime, where the gas can be considered chemically perfect, but the rotational and vibrational temperatures of the gas must be considered separately, leading to two temperature models. See particularly the modeling of supersonic nozzles, where vibrational freezing becomes important.[ citation needed ]
In this regime, diatomic or polyatomic gases (the gases found in most atmospheres) begin to dissociate as they come into contact with the bow shock generated by the body. Surface catalysis plays a role in the calculation of surface heating, meaning that the type of surface material also has an effect on the flow. The lower border of this regime is where any component of a gas mixture first begins to dissociate in the stagnation point of a flow (which for nitrogen is around 2000 K). At the upper border of this regime, the effects of ionization start to have an effect on the flow.[ citation needed ]
In this regime the ionized electron population of the stagnated flow becomes significant, and the electrons must be modeled separately. Often the electron temperature is handled separately from the temperature of the remaining gas components. This region occurs for freestream flow velocities around 3–4 km/s. Gases in this region are modeled as non-radiating plasmas.[ citation needed ]
Above around 12 km/s, the heat transfer to a vehicle changes from being conductively dominated to radiatively dominated. The modeling of gases in this regime is split into two classes:[ citation needed ]
The modeling of optically thick gases is extremely difficult, since, due to the calculation of the radiation at each point, the computation load theoretically expands exponentially as the number of points considered increases.
Aerodynamics is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids — liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.
The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Austrian physicist and philosopher Ernst Mach.
In physics, a shock wave, or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.
Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.
The Prandtl–Glauert singularity is a theoretical construct in flow physics, often incorrectly used to explain vapor cones in transonic flows. It is the prediction by the Prandtl–Glauert transformation that infinite pressures would be experienced by an aircraft as it approaches the speed of sound. Because it is invalid to apply the transformation at these speeds, the predicted singularity does not emerge. The incorrect association is related to the early-20th-century misconception of the impenetrability of the sound barrier.
A waverider is a hypersonic aircraft design that improves its supersonic lift-to-drag ratio by using the shock waves being generated by its own flight as a lifting surface, a phenomenon known as compression lift.
A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.
Transonic flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound, typically between Mach 0.8 and 1.2.
In aeronautics, wave drag is a component of the aerodynamic drag on aircraft wings and fuselage, propeller blade tips and projectiles moving at transonic and supersonic speeds, due to the presence of shock waves. Wave drag is independent of viscous effects, and tends to present itself as a sudden and dramatic increase in drag as the vehicle increases speed to the critical Mach number. It is the sudden and dramatic rise of wave drag that leads to the concept of a sound barrier.
In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, Cp.
Aerodynamic heating is the heating of a solid body produced by its high-speed passage through air. In science and engineering, an understanding of aerodynamic heating is necessary for predicting the behaviour of meteoroids which enter the Earth's atmosphere, to ensure spacecraft safely survive atmospheric reentry, and for the design of high-speed aircraft and missiles.
In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and a solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.
An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic, compressible flow. Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur. While the upstream and downstream flow directions are unchanged across a normal shock, they are different for flow across an oblique shock wave.
In fluid dynamics, Rayleigh flow refers to frictionless, non-adiabatic fluid flow through a constant-area duct where the effect of heat transfer is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area remains constant and no mass is added within the duct. Therefore, unlike Fanno flow, the stagnation temperature is a variable. The heat addition causes a decrease in stagnation pressure, which is known as the Rayleigh effect and is critical in the design of combustion systems. Heat addition will cause both supersonic and subsonic Mach numbers to approach Mach 1, resulting in choked flow. Conversely, heat rejection decreases a subsonic Mach number and increases a supersonic Mach number along the duct. It can be shown that for calorically perfect flows the maximum entropy occurs at M = 1.
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.
Subsonic wind tunnels are used for operations at low Mach numbers, with speeds in the test section up to 480 km/h. They may be of open-return type or closed-return flow. These tunnels use large axial fans to move air and increase dynamic pressure, overcoming viscous losses. The design principles of subsonic wind tunnels are based on the continuity equation and Bernoulli's principle, which allow for the calculation of important parameters such as the tunnel's contraction ratio.
The Ayaks is a hypersonic waverider aircraft program started in the Soviet Union and currently under development by the Hypersonic Systems Research Institute (HSRI) of Leninets Holding Company in Saint Petersburg, Russia.
A supersonic airfoil is a cross-section geometry designed to generate lift efficiently at supersonic speeds. The need for such a design arises when an aircraft is required to operate consistently in the supersonic flight regime.
In fluid mechanics, isentropic nozzle flow describes the movement of a fluid through a narrow opening without an increase in entropy.