SR-72 | |
---|---|
2013 Lockheed Martin concept image of the SR-72 | |
Role | Hypersonic strategic reconnaissance UAV |
Manufacturer | Lockheed Martin |
Status | Design proposal |
The Lockheed Martin SR-72, colloquially referred to as "Son of Blackbird", [1] is an American hypersonic UAV concept intended for intelligence, surveillance and reconnaissance (ISR) proposed privately in 2013 by Lockheed Martin as a successor to the retired Lockheed SR-71 Blackbird. In 2018, company executives said an SR-72 test vehicle could fly by 2025 and enter service in the 2030s.
The SR-71 Blackbird was retired by the United States Air Force in 1998, [2] eliminating a unique and useful intelligence, surveillance and reconnaissance (ISR) capability. Though most fifth-generation jet fighters and projected drones intended to operate in enemy airspace incorporated anti-radar stealth technologies, some came to believe that the growth of anti-access/area denial tactics and counter-stealth technologies meant that speed, not stealth, was the most promising approach to penetrating protected airspace. [3]
The first unconfirmed reports about the SR-72 appeared in 2007, when various sources said Lockheed Martin was developing an airplane able to fly six times the speed of sound or Mach 6 (4,000 mph; 6,400 km/h; 3,500 kn) for the Air Force. [4] [5] —about twice as fast as the SR-71.
Lockheed Martin had been collaborating with Aerojet Rocketdyne since 2006 to develop an appropriate engine. After the 2008 cancellation of the HTV-3X, the company used its scramjet technology for the SR-72 engine. The SR-72 was envisioned to have an air-breathing propulsion system that could handle subsonic, transonic, supersonic, and hypersonic speeds. [6] Turbojet engines can work at zero speed and usually perform best up to Mach 2.2. [7] Ramjets, using aerodynamic compression with subsonic combustion, perform poorly below Mach 0.5, are most efficient around Mach 3, and can go up to around Mach 6. The SR-71's engines converted to low-speed ramjets by redirecting the airflow around the core and into the afterburner for speeds greater than Mach 2.5. Finally, scramjets (supersonic combustion ramjets) cover the range of high supersonic to hypersonic speeds. The SR-72 was to use a turbine-based combined cycle (TBCC) system to use a turbine engine at low speeds and a scramjet engine at high speeds. [2] The turbine and ramjet engines shared common inlet and nozzle, but with separate airflow paths. [8] [9]
At speeds of Mach 5 and above, aerodynamic heating creates temperatures hot enough to melt conventional metallic airframes, so engineers considered making critical components from composites such as high-performance carbon, ceramic, and metal mixes, which have been used in intercontinental ballistic missiles and the retired Space Shuttle.
On 1 November 2013, an article on Lockheed Martin Skunk Works' SR-72 work was published by Aviation Week & Space Technology . [6] [2] Public attention to the news was large enough to overwhelm the Aviation Week servers. [10] Company officials announced plans to build an optionally piloted scaled demonstrator that would be 60 ft (18 m) long, about the size of a Lockheed Martin F-22 Raptor, and powered by one full-scale engine to fly for several minutes at Mach 6; it would be ready in 2018 for flight testing that would follow the timeline for the hypersonic High Speed Strike Weapon. [6] [2] The production SR-72 would be similar in size to the SR-71 at over 100 ft (30 m) long, have the same range, and enter service by 2030, company officials said. It would follow the U.S. Air Force's hypersonic road map for developing a hypersonic strike weapon by 2020, and a penetrating ISR aircraft by 2030. Lockheed officials said they had talked with government officials, but had not secured funding for the demonstrator or engine. [6] [2]
On 13 November 2013, Air Force Chief of Staff General Mark Welsh said the service was interested in hypersonic flight, which would reduce the time an adversary would have to react to an operation. He said it was among the capabilities that could help the Air Force against the advanced air defenses of the mid-2020s. Welsh said the service was pursuing hypersonic technology, but lacked the material ability to construct a full-size plane like the uncrewed SR-72. He also said the Air Force had not talked to Lockheed about the SR-72. [11]
By December 2013, the Air Force declined to fund the SR-72 program. Pressed by budget cuts, the service chose instead to develop the Northrop Grumman RQ-180 stealth UAV—expected to be cheaper and less complex to design and manufacture—to conduct ISR missions in contested airspace. [12]
In December 2014, NASA awarded Lockheed Martin a contract to study the feasibility of building the SR-72's propulsion system using existing turbine engine technologies, The $892,292 (~$1.13 million in 2023) contract funded a design study to determine the viability of a TBCC propulsion system by combining one of several current turbine engines, with a very low Mach ignition Dual Mode Ramjet (DMRJ). NASA previously funded a Lockheed Martin study that found speeds up to Mach 7 could be achieved with a dual-mode engine combining turbine and ramjet technologies. The problem with hypersonic propulsion has always been the gap between the highest speed capabilities of a turbojet, from around Mach 2.2 to the lowest speed of a scramjet at Mach 4. Typical turbine engines cannot achieve high enough speeds for a scramjet to take over and continue accelerating. The NASA-Lockheed Martin study is looking at the possibility of a higher-speed turbine engine or a scramjet that can function in a turbine engine's slower flight envelope; the DARPA HTV-3X had demonstrated a low-speed ramjet (Dual Mode Ramjet) that could operate below Mach 3. Existing turbofan engines powering jet fighters and other experimental designs are being considered for modification. If the study is successful, NASA will fund a demonstrator to test the DMRJ in a flight research vehicle. [13] Aerojet Rocketdyne was awarded a $1,099,916 contract by NASA's Glenn Research Center on 15 December 2014 during mode transition. [9] The two firms were reported to be collaborating on turbine-based combined cycle (TBCC) propulsion system, with plans to begin developing the SR-72 hypersonic demonstrator in 2018, with the first flight expected in 2023. [14]
In May 2015, it was reported that the SR-72 was envisioned as an ISR and strike platform, but no payloads were specified, likely because current payloads would be insufficient on an aircraft flying at Mach 6 up to 80,000 feet (24,400 m) high requiring hundreds of miles to turn. New sensors and weapons would likely have to be created specifically to operate at such speeds. [15]
In March 2016, Lockheed Martin CEO Hewson said that the company was on the verge of a technological breakthrough that would allow its SR-72 to reach Mach 6 and allow a hypersonic demonstrator aircraft the size of an F-22 stealth fighter to be built for less than $1 billion. [16] [17] [18] [19]
In June 2017, Lockheed Martin announced that the SR-72 would be in development by the early 2020s, with top speed past Mach 6. Executive Vice President Rob Weiss said, "We've been saying hypersonics [are] two years away for the last 20 years, but all I can say is the technology is mature and we, along with DARPA and the services, are working hard to get that capability into the hands of our warfighters as soon as possible." [20]
In January 2018, Lockheed Vice President Jack O'Banion gave a presentation that credited the advancements in additive manufacturing and computer modeling, stating that it would not have been possible to make the airplane five years ago and that 3D printing allowed a cooling system to be embedded in the engine. [21] [22]
In February 2018, Orlando Carvalho, executive vice president of aeronautics at Lockheed Martin, pushed back on reports of the SR-72's development, saying that no SR-72 had been produced. He also said that hypersonic research is fueling weapons development. "Eventually as that technology is matured, it could ultimately enable the development of a reusable vehicle. Prior to this we may have referred to it as a 'like an SR-72', but now the terminology of choice is 'reusable vehicle'", he said. [22]
In November 2018, Lockheed Martin said that a prototype of the SR-72 was scheduled to fly by 2025. In addition the company stated that the aircraft is to be equipped to fire hypersonic missiles. [23] The SR-72 could enter service in the 2030s. [24]
A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to Mach 6.
The Lockheed SR-71 "Blackbird" is a retired long-range, high-altitude, Mach 3+ strategic reconnaissance aircraft developed and manufactured by the American aerospace company Lockheed Corporation. The SR-71 has several nicknames, including "Blackbird" and "Habu".
A supersonic transport (SST) or a supersonic airliner is a civilian supersonic aircraft designed to transport passengers at speeds greater than the speed of sound. To date, the only SSTs to see regular service have been Concorde and the Tupolev Tu-144. The last passenger flight of the Tu-144 was in June 1978 and it was last flown in 1999 by NASA. Concorde's last commercial flight was in October 2003, with a November 26, 2003 ferry flight being its last flight.
A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.
The NASA X-43 was an experimental unmanned hypersonic aircraft with multiple planned scale variations meant to test various aspects of hypersonic flight. It was part of the X-plane series and specifically of NASA's Hyper-X program developed in the late 1990s. It set several airspeed records for jet aircraft. The X-43 is the fastest jet-powered aircraft on record at approximately Mach 9.6.
SABRE was a concept under development by Reaction Engines Limited for a hypersonic precooled hybrid air-breathing rocket engine. The engine is designed to achieve single-stage-to-orbit capability, propelling the proposed Skylon spaceplane to low Earth orbit. SABRE is an evolution of Alan Bond's series of LACE-like designs that started in the early/mid-1980s for the HOTOL project.
Black project is an informal term used to describe a highly classified, top-secret military or defense project that is not publicly acknowledged by government, military personnel, or contractors.
The US Air Force's Aerospaceplane was a basic research project led by Weldon Worth at the Wright-Patterson AFB concerning the design of future recoverable spaceplanes. The effort was started in 1957 as a result of the USAF official SR-89774 for a reusable spaceplane. By 1959, this work was more known as the Recoverable Orbital Launch System (ROLS). It encompassed a variety of concepts, designs and research projects from 1958, but was cancelled as impractical in 1963.
A supersonic aircraft is an aircraft capable of supersonic flight, that is, flying faster than the speed of sound. Supersonic aircraft were developed in the second half of the twentieth century. Supersonic aircraft have been used for research and military purposes, but only two supersonic aircraft, the Tupolev Tu-144 and the Concorde, ever entered service for civil use as airliners. Fighter jets are the most common example of supersonic aircraft.
The DARPA FALCON Project was a two-part joint project between the Defense Advanced Research Projects Agency (DARPA) and the United States Air Force (USAF) and is part of Prompt Global Strike. The first part of the project aimed to develop a Small Launch System (SLS) capable of accelerating hypersonic gliding weapons as well as launching small satellites into Earth orbit. The second part of the project aimed to develop Hypersonic Weapon Systems (HWS): a short term high performance hypersonic gliding weapon previously named the X-41 Common Aero Vehicle (CAV) that could be launched from Expendable Launch Vehicles (ELV), Reusable Launch Vehicles (RLVs), Hypersonic Cruise Vehicles (HCV), or Space Maneuvering Vehicles (SMP), and a long term hypersonic cruise aircraft named the Hypersonic Cruise Vehicle (HCV). This two-part program was announced in 2003 and continued into 2006.
The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.
The Boeing X-51 Waverider is an unmanned research scramjet experimental aircraft for hypersonic flight at Mach 5 and an altitude of 70,000 feet (21,000 m). The aircraft was designated X-51 in 2005. It completed its first powered hypersonic flight on 26 May 2010. After two unsuccessful test flights, the X-51 completed a flight of over six minutes and reached speeds of over Mach 5 for 210 seconds on 1 May 2013 for the longest duration powered hypersonic flight.
Scramjet programs refers to research and testing programs for the development of supersonic combustion ramjets, known as scramjets. This list provides a short overview of national and international collaborations, and civilian and military programs. The USA, Russia, India, and China (2014), have succeeded at developing scramjet technologies.
The Tupolev Tu-2000 was a planned hypersonic flight experimental aircraft designed by the Tupolev design bureau. It was intended to test technologies for a single-stage-to-orbit aerospaceplane and also the Tupolev Tu-360 intercontinental bomber.
Hypersonic flight is flight through the atmosphere below altitudes of about 90 km (56 mi) at speeds greater than Mach 5, a speed where dissociation of air begins to become significant and high heat loads exist. Speeds over Mach 25 have been achieved below the thermosphere as of 2020.
Frederick Stucky Billig was an American aerospace engineer who was a pioneer in the development of scramjet propulsion.
The HSTDV is an unmanned scramjet demonstration aircraft for hypersonic flight. It is being developed as a carrier vehicle for hypersonic and long-range cruise missiles, and will have multiple civilian applications including the launching of small satellites at low cost. The HSTDV program is being run by the Defence Research and Development Organisation (DRDO).
The Northrop Grumman RQ-180 is an American stealth unmanned aerial vehicle (UAV) surveillance aircraft intended for contested airspace. As of 2019, there had been no images or statements released, but evidence points to the existence of the RQ-180 and its use in regular front-line service.
A hypersonic weapon is a weapon capable of travelling at hypersonic speed, defined as between 5 and 25 times the speed of sound.