Space Shuttle orbiter

Last updated

Space Shuttle orbiter
STS-121-DiscoveryEnhanced.jpg
Manufacturer Rockwell International (North American Aircraft Operations)
Country of origin United States
Operator NASA
ApplicationsCrew and cargo spaceplane
Specifications
Spacecraft typeCrewed, reusable
Launch mass110,000 kg (240,000 lb)
Dry mass78,000 kg (172,000 lb)
Regime Low Earth orbit
Dimensions
Length37.237 m (122.17 ft)
Height17.86 m (58.6 ft)
Wingspan23.79 m (78.1 ft)
Capacity
Payload to Low Earth orbit
Mass24,310 kg (53,590 lb)
Production
StatusRetired
Built6
Launched5 orbiters
135 missions
Lost2 orbiters
Maiden launch Space Shuttle Columbia
STS-1
(April 12, 1981)
Last launch Space Shuttle Atlantis
STS-135
(July 8, 2011)
Last retirement Space Shuttle Atlantis
STS-135
(July 21, 2011)

The Space Shuttle orbiter is the spaceplane component of the Space Shuttle, a partially reusable orbital spacecraft system that was part of the discontinued Space Shuttle program. Operated from 1981 to 2011 by NASA, [1] the U.S. space agency, this vehicle could carry astronauts and payloads into low Earth orbit, perform in-space operations, then re-enter the atmosphere and land as a glider, returning its crew and any on-board payload to the Earth.

Contents

Six orbiters were built for flight: Enterprise , Columbia , Challenger , Discovery , Atlantis , and Endeavour . All were built in Palmdale, California, by the Pittsburgh, Pennsylvania-based Rockwell International company's North American Aircraft Operations branch. The first orbiter, Enterprise, made its maiden flight in 1977. An unpowered glider, it was carried by a modified Boeing 747 airliner called the Shuttle Carrier Aircraft and released for a series of atmospheric test flights and landings. Enterprise was partially disassembled and retired after completion of critical testing. The remaining orbiters were fully operational spacecraft, and were launched vertically as part of the Space Shuttle stack.

Columbia was the first space-worthy orbiter; it made its inaugural flight in 1981. Challenger, Discovery, and Atlantis followed in 1983, 1984, and 1985 respectively. In 1986, Challenger was destroyed in a disaster shortly after its 10th launch, killing all seven crew members. Endeavour was built as Challenger's successor, and was first launched in 1992. In 2003, Columbia was destroyed during re-entry, leaving just three remaining orbiters. Discovery completed its final flight on March 9, 2011, and Endeavour completed its final flight on June 1, 2011. Atlantis completed the final Shuttle flight, STS-135, on July 21, 2011.

In addition to their crews and payloads, the reusable orbiter carried most of the Space Shuttle System's liquid-propellant rocket system, but both the liquid hydrogen fuel and the liquid oxygen oxidizer for its three main rocket engines were fed from an external cryogenic propellant tank. Additionally, two reusable solid rocket boosters (SRBs) provided additional thrust for approximately the first two minutes of launch. The orbiters themselves did carry hypergolic propellants for their Reaction Control System (RCS) thrusters and Orbital Maneuvering System (OMS) engines.

Description

About the size of a McDonnell Douglas DC-9, [2] the Space Shuttle orbiter resembled an airplane in its design, with a standard-looking fuselage and two double delta wings, both swept wings at an angle of 81 degrees at their inner leading edges and 45 degrees at their outer leading edges. The vertical stabilizer of the orbiter had a leading edge that was swept back at a 45-degree angle. There were four elevons mounted at the trailing edges of the delta wings, and the combination rudder and speed brake was attached at the trailing edge of the vertical stabilizer. These, along with a movable body flap located underneath the main engines, controlled the orbiter during later stages of reentry.

The prime contractor for the orbiter was Rockwell International, which built the pressurized cabin, thermal protection, forward attitude control system, and forward and aft fuselage in its Downey, California factory, the payload bay doors in its Tulsa, Oklahoma factory, and the body flap in its Columbus, Ohio factory. Subcontractors included Convair in San Diego for the midsection, Fairchild Aircraft in Farmingdale, New York for the vertical stabilizer, Grumman in Bethpage, New York for the wings, [3] [4] Marquardt Corporation in Van Nuys, California for the attitude control propulsion, [5] Aerojet in Rancho Cordova, California for the orbital insertion and deorbit propulsion, McDonnell Douglas for the surrounding pods, and Rocketdyne in Canoga Park, Los Angeles for the launch and ascent propulsion. [4] [6] Final assembly was carried out at United States Air Force Plant 42 near Palmdale, California. [3]

Attitude control system

Space Shuttle forward reaction control thrusters Shuttle front RCS.jpg
Space Shuttle forward reaction control thrusters

The Reaction Control System (RCS) was composed of 44 small liquid-fueled rocket thrusters and their very sophisticated fly-by-wire flight control system, which utilized computationally intensive digital Kalman filtering. This control system carried out the usual attitude control along the pitch, roll, and yaw axes during all of the flight phases of launching, orbiting, and re-entry. This system also executed any needed orbital maneuvers, including all changes in the orbit's altitude, orbital plane, and eccentricity. These were all operations that required more thrust and impulse than mere attitude control.

The forward rockets of the Reaction Control System, located near the nose of the Space Shuttle orbiter, included 14 primary and two vernier RCS rockets. The aft RCS engines were located in the two Orbital Maneuvering System (OMS) pods at the rear of the orbiter, and these included 12 primary (PRCS) and two vernier (VRCS) engines in each pod. The PRCS system provided the pointing control of the Orbiter, and the VRCS was used for fine maneuvering during the rendezvous, docking, and undocking maneuvers with the International Space Station, or formerly with the Russian Mir space station. The RCS also controlled the attitude of the orbiter during most of its re-entry into the Earth's atmosphere – until the air became dense enough that the rudder, elevons and body flap became effective. [7]

The orbiter's OMS and RCS fuel is monomethyl hydrazine (CH3NHNH2), and the oxidizer is dinitrogen tetroxide (N2O4). This particular propellant combination is extremely reactive and spontaneously ignites on contact (hypergolic) with each other. This chemical reaction (4CH3NHNH2 + 5N2O4 → 9N2 + 4CO2 + 12H2O) occurs within the engine's combustion chamber. The reaction products are then expanded and accelerated in the engine bell to provide thrust. Due to their hypergolic characteristics these two chemicals are easily started and restarted without an ignition source, which makes them ideal for spacecraft maneuvering systems.

During the early design process of the orbiter, the forward RCS thrusters were to be hidden underneath retractable doors, which would open once the orbiter reached space. These were omitted in favor of flush-mounted thrusters for fear that the RCS doors would remain stuck open and endanger the crew and orbiter during re-entry. [8]

Pressurized cabin

Space Shuttle glass cockpit (simulated, composite image) STSCPanel.jpg
Space Shuttle glass cockpit (simulated, composite image)
A window on Endeavour's aft flight deck S123 Linnehan through the window.jpg
A window on Endeavour's aft flight deck

The orbiter's flight deck or cockpit originally had 2,214 controls and displays, about three times as many as the Apollo command module. [2] The crew cabin consisted of the flight deck, the mid-deck, and the utility area. The uppermost of these was the flight deck, in which sat the Space Shuttle's commander and pilot in permanently fixed seats with up to two mission specialists seated behind them in stowable seats. [9] The mission specialist in seat four (located behind and between commander and pilot) served as the flight engineer during ascent and landing, tracking information from CAPCOM and calling out milestones.

The mid-deck, which was below the flight deck, was normally equipped with up to three additional stowable seats, depending on the crew requirements of the mission. [10] One mission carried four seats (STS-61-A) and NASA drew up plans that were never used to carry up to seven seats in the case of an emergency rescue (STS-400).

The galley, toilet, sleep locations, storage lockers, and the side hatch for entering and exiting the orbiter were also located on the mid-deck, as well as the airlock. The airlock had an additional hatch into the payload bay. This airlock allowed two or three astronauts, wearing their Extravehicular Mobility Unit (EMU) space suits, to depressurize before a walk in space (EVA), and also to repressurize and re-enter the orbiter at the conclusion of the EVA.

The utility area was located under the floor of the mid-deck and contained air and water tanks in addition to the carbon dioxide scrubbing system.

Propulsion

Atlantis's main engines during launch 020408 STS110 Atlantis launch.jpg
Atlantis's main engines during launch

Three Space Shuttle Main Engines (SSMEs) were mounted on the orbiter's aft fuselage in the pattern of an equilateral triangle. These three liquid-fueled engines could be swiveled 10.5 degrees vertically and 8.5 degrees horizontally during the rocket-powered ascent of the orbiter in order to change the direction of their thrust. Hence, they steered the entire Space Shuttle, as well as providing rocket thrust towards orbit. The aft fuselage also housed three auxiliary power units (APU). The APUs chemically converted hydrazine fuel from a liquid state to a gas state, powering a hydraulic pump which supplied pressure for all of the hydraulic system, including the hydraulic sub-system that pointed the three main liquid-fueled rocket engines, under computerized flight control. The hydraulic pressure generated was also used to control all of the orbiter's flight control surfaces (the elevons, rudder, speed brake, etc.), to deploy the landing gear of the orbiter, and to retract the umbilical hose connection doors located near the rear landing gear, which supplied the orbiter's SSMEs with liquid hydrogen and oxygen from the external tank.

Two Orbital Maneuvering System (OMS) thrusters were mounted in two separate removable pods on the orbiter's aft fuselage, located between the SSMEs and the vertical stabilizer. The OMS engines provided significant thrust for course orbital maneuvers, including insertion, circularization, transfer, rendezvous, deorbit, abort to orbit, and to abort once around. [11] At lift-off, two solid rocket boosters (SRBs) were used to take the vehicle to an altitude of roughly 140,000 feet. [12]

Electrical power

Electric power for the orbiter's subsystems was provided by a set of three hydrogen-oxygen fuel cells which produced 28 volt DC power and was also converted into 115 volt 400 Hz AC three-phase electric power (for systems that used AC power). [13] These provided power to the entire Shuttle stack (including the SRBs and ET) from T-minus 3m30s up through the end of the mission. The hydrogen and oxygen for the fuel cells was kept in pairs of cryogenic storage tanks in the mid-fuselage underneath the payload bay liner, and a variable number of such tank sets could be installed (up to five pairs) depending on the requirements of the mission. The three fuel cells were capable of generating 21 kilowatts of power continuously (or a 15-minute peak of 36 kilowatts) with the orbiter consuming an average of about 14 kilowatts of that power (leaving 7 kilowatts for the payload).

Additionally, the fuel cells provided potable water for the crew during the mission.

Computer systems

The orbiter's computer system consisted of five identical IBM AP-101 avionics computers, which redundantly controlled the vehicle's on-board systems. The specialized HAL/S programming language was used for orbiter systems. [14] [15]

Thermal protection

Discovery's ventral thermal protection system STS-114 Discovery thermal protection system (S114-E-6412).jpg
Discovery's ventral thermal protection system

The orbiters were protected by Thermal Protection System (TPS) materials (developed by Rockwell Space Systems) inside and out, from the orbiter's outer surface to the payload bay. [16] [17] The TPS protected it from the cold soak of −121 °C (−186 °F) in space to the 1,649 °C (3,000 °F) heat of re-entry. The tile materials comprising much of the orbiter's outermost layer were mostly air held within near-pure silica fibers, which made it efficient at refractory insulation that absorbed and redirected heat back out into the air, and covered in silicon borides and borosilicate glass, with blacker tiles covering the lower surface, and whiter tiles covering the tail, parts of the upper wing and crew cabin surfaces, and the outsides of the payload bay doors. The nose cap, nose landing gear doors, and leading edges were made of reinforced carbon–carbon, which is rayon impregnated with graphite-filled resins and coated in silicon carbide. [18] The upper, white materials that were not in tiles were mostly made of either Nomex felt coated in silicon-rich elastomer or beta cloth, woven silica fibers covered in Teflon. This was especially true in the interior of the payload bay. [19] [20] [21] [17]

Structure

The orbiter's structure was made primarily from aluminum alloy, although the engine thrust structure was made from titanium alloy. The later orbiters (Discovery, Atlantis and Endeavour) substituted graphite epoxy for aluminum in some structural elements in order to reduce weight. The windows were made of aluminum silicate glass and fused silica glass, and comprised an internal pressure pane, a 1.3-inch-thick (33 mm) optical pane, and an external thermal pane. [22] The windows were tinted with the same ink used to make American banknotes. [23]

Landing gear

Atlantis's landing gear are deployed following STS-122. Space Shuttle Atlantis landing at KSC following STS-122 (crop).jpg
Atlantis's landing gear are deployed following STS-122.

The Space Shuttle orbiter had three sets of landing gear which emerged downwards through doors in the heat shield. As a weight-saving measure, the gear could not be retracted once deployed. Since any premature extension of the landing gear would very likely have been catastrophic (as it opened through the heat shield layers), the landing gear could only be lowered by manual controls, and not by any automatic system.

Similarly, since the Shuttle landed at high speed and could not abort its landing attempt, the gear had to deploy reliably on the first try every time. The gear were unlocked and deployed by triple redundant hydraulics, with the gear doors actuated by mechanical linkages to the gear strut. If all three hydraulic systems failed to release the landing gear uplocks within one second of the release command, pyrotechnic charges automatically cut the lock hooks and a set of springs deployed the gear.

During landing, the Shuttle nose wheel could be steered with the rudder pedals in the cockpit. During the construction of Space Shuttle Endeavour, an improved nose wheel steering system was developed which allowed easier and more effective nose wheel steering. After Endeavour's roll-out, the system was installed on the other shuttles during their overhauls in the early 1990s.

Lack of navigational lights

The Space Shuttle orbiter did not carry anti-collision lights, navigational lights, or landing lights, because the orbiter always landed in areas that had been specially cleared by both the Federal Aviation Administration (FAA) and the U.S. Air Force. The orbiter always landed at either Edwards Air Force Base, California or at the Kennedy Space Center Shuttle Landing Facility, Florida, except STS-3 at the White Sands Space Harbor in New Mexico. Similar special clearances (no-fly zones) were also in effect at potential emergency landing sites, such as in Spain and in West Africa during all launches.

When an orbiter landing was carried out at night, the runway was always strongly illuminated with light from floodlights and spotlights on the ground, making landing lights on the orbiter unnecessary and also an unneeded spaceflight weight load. A total of 26 landings took place at night, the first being STS-8 in September 1983. [24]

Markings and insignia

The Space Shuttle orbiter ranks second among the world's first spaceplanes, preceded only by the North American X-15 and followed by the Buran, SpaceShipOne, and the Boeing X-37. World's First Five Spaceplanes.PNG
The Space Shuttle orbiter ranks second among the world's first spaceplanes, preceded only by the North American X-15 and followed by the Buran, SpaceShipOne, and the Boeing X-37.
Enterprise displaying the orbiter markings. Enterprise free flight.jpg
Enterprise displaying the orbiter markings.

The typeface used on the Space Shuttle orbiter was Helvetica. [25]

The prototype orbiter Enterprise originally had a flag of the United States on the upper surface of the left wing and the letters "USA" in black on the right wing. The name "Enterprise" in black was painted on the payload bay doors just above the forwardmost hinge and behind the crew module; on the aft end of the payload bay doors was the NASA "worm" logotype in gray. Underneath the rear of the payload bay doors on the side of the fuselage just above the wing was the text "United States" in black with a flag of the United States ahead of it.

The first operational orbiter, Columbia, originally had the same markings as Enterprise, although the letters "USA" on the right wing were slightly larger and spaced farther apart. Columbia also had black tiles which Enterprise lacked on its forward RCS module, around the cockpit windows, and on its vertical stabilizer. Columbia also had distinctive black chines on the forward part of its upper wing surfaces, which none of the other orbiters had.

Gray NASA "worm" logotype used on the orbiters from 1982 to 1998. NASA Worm logo (gray).svg
Gray NASA "worm" logotype used on the orbiters from 1982 to 1998.

Challenger established a modified marking scheme for the shuttle fleet that would be matched by Discovery, Atlantis and Endeavour. The letters "USA" in black above an American flag were displayed on the left wing, with the NASA "worm" logotype in gray centered above the name of the orbiter in black on the right wing. Also, the name of the orbiter was inscribed not on the payload bay doors, but on the forward fuselage just below and behind the cockpit windows. This would make the name visible when the orbiter was photographed in orbit with the doors open. Challenger also had black tiles on the tip of its vertical stabilizer much like Columbia, which the other orbiters lacked.

In 1983, Enterprise had its wing markings changed to match Challenger, and the NASA "worm" logotype on the aft end of the payload bay doors was changed from gray to black. Some black markings were added to the nose, cockpit windows and vertical tail to more closely resemble the flight vehicles, but the name "Enterprise" remained on the payload bay doors as there was never any need to open them. Columbia had its name moved to the forward fuselage to match the other flight vehicles after STS-61-C, during the 1986–1988 hiatus when the shuttle fleet was grounded following the loss of Challenger, but retained its original wing markings until its last overhaul (after STS-93), and its unique black chines for the remainder of its operational life.

NASA "meatball" insignia used on the operational Space Shuttle orbiters after 1998. NASA logo.svg
NASA "meatball" insignia used on the operational Space Shuttle orbiters after 1998.

Beginning in STS-95 (1998), the flight vehicles' markings were modified to incorporate the NASA "meatball" insignia. The "worm" logotype, which the agency had phased out, was removed from the payload bay doors and the "meatball" insignia was added aft of the "United States" text on the lower aft fuselage. The "meatball" insignia was also displayed on the left wing, with the American flag above the orbiter's name, left-justified rather than centered, on the right wing. The three surviving flight vehicles, Discovery, Atlantis and Endeavour, still bear these markings as museum displays. Enterprise became the property of the Smithsonian Institution in 1985 and was no longer under NASA's control when these changes were made, hence the prototype orbiter still has its 1983 markings and still has its name on the payload bay doors.

Retirement

With the end of the Shuttle program, plans were made to place the three remaining Space Shuttle orbiters on permanent display. NASA Administrator Charles F. Bolden Jr. announced the disposition location of the orbiters on April 12, 2011, the 50th anniversary of the first human space flight and the 30th anniversary of the first flight of Columbia.

Discovery went to the Smithsonian's Steven F. Udvar-Hazy Center, replacing Enterprise which was moved to the Intrepid Museum in New York City. Endeavour went to the California Science Center in Los Angeles arriving on October 14, 2012. Atlantis went to the Kennedy Space Center Visitor Complex in Merritt Island on November 2, 2012. Hundreds of other shuttle artifacts will be put on display at various other museums and educational institutions around the U.S. [26]

One of the Crew Compartment Trainer Flight and mid-deck training hardware is on display at the National Museum of the U.S. Air Force, [27] while the other is on display at the JSC. [28] The Full Fuselage Trainer, which includes the payload bay and aft section but no wings, is on display at the Museum of Flight in Seattle, Washington. [29] The Mission Simulation and Training Facility's Shuttle Mission Simulator Fixed Base Simulator originally went to the Adler Planetarium in Chicago, Illinois [30] but was later transferred to the Stafford Air & Space Museum in Weatherford, Oklahoma. [31] The Motion Base Simulator was transferred to the Texas A&M Aerospace Engineering Department in College Station, Texas, [32] and the Guidance and Navigation Simulator went to the Wings of Dreams Aviation Museum in Starke, Florida. [33] NASA also made approximately 7,000 TPS tiles available to schools and universities. [34]

Shuttle Orbiter Specifications (OV-105)

STS orbiter 4-view diagram (EG-0076-07).png

Data from [35]

General characteristics

Performance

The cargo bay is 60 ft (18 m) by 15 ft (4.6 m), [38] and could transport 24,400 kg (53,800 lb) to 204 km (127 mi), or 12,500 kg (27,600 lb) to the ISS at 407 km (253 mi). [39] The most massive payload launched by the Space Shuttle was the Chandra X-ray Observatory in 1999 at 50,162 lb (22,753 kg), including its Inertial Upper Stage (IUS) and support equipment. [40] The Shuttle was capable of returning approximately 16,000 kg (35,000 lb) of cargo to Earth. [41]

The orbiter's maximum glide ratio / lift-to-drag ratio varied considerably with speed, ranging from 1:1 at hypersonic speeds, 2:1 at supersonic speeds, and reaching 4.5:1 at subsonic speeds during approach and landing. [37]

Fleet

Shuttle launch profiles. From left to right: Columbia, Challenger, Discovery, Atlantis, and Endeavour. Shuttle profiles.jpg
Shuttle launch profiles. From left to right: Columbia , Challenger , Discovery , Atlantis , and Endeavour .

Individual Space Shuttle orbiters were named in honor of antique sailing ships of the navies of the world (though the test orbiter Enterprise, originally to be named "Constitution", had its name changed after the Star Trek starship, itself named after a series of US Navy ships), and they were also numbered using the NASA Orbiter Vehicle designation system. Three of the names had also been given to Apollo spacecraft between 1969 and 1972: Apollo 11 Command Module Columbia, Apollo 15 Command Module Endeavour, and Apollo 17 Lunar Module Challenger.

While all of the orbiters were externally practically identical, they had minor differences in their interiors. New equipment for the Orbiters was installed in the same order that they underwent maintenance work, and the newer orbiters were constructed by Rockwell International, under NASA supervision, with some more advanced, lighter in weight, structural elements. Thus, the newer orbiters (Discovery, Atlantis and Endeavour) had slightly more cargo capacity than Columbia or Challenger.

The Space Shuttle orbiters were assembled at Rockwell's assembly facility in Palmdale, California, [4] at the federally owned Plant 42 complex.

Orbiter Vehicle Designation

Each NASA Space Shuttle designation was composed of a prefix and suffix separated by a dash. The prefix for operational shuttles is OV, for Orbiter Vehicle. The suffix is composed of two parts: the series and the vehicle number; "0" was used for non-flight ready orbiters, and "1" was used for flight-ready orbiters. The vehicle number is sequentially assigned within the series, beginning with 1. Therefore, there can never be an OV-100 as it would read "Orbiter Vehicle Series 1 Vehicle 0". Many proposals to build a second generation of orbiters, externally compatible with the current system but internally new, refer to them as "OV-200" or "OV-2xx" in order to differentiate them from the "first generation", the OV-100s. This terminology is informal, and it is unlikely that any Shuttle-derived vehicle built will be given such designation. Challenger was originally intended to be used as a Structural Test Article (STA), rather than a flight-capable orbiter; as such, the numbering was changed when it was rebuilt. Enterprise, on the other hand, was intended to be rebuilt into a flight-capable orbiter; it was found to be cheaper to rebuild STA-099 than OV-101, so it remained unflown. The designations were not altered, despite these changes in plans. An "OV-106" designation was given to the set of structural components manufactured to replace those used in the construction of Endeavour; however, the contract for these was canceled shortly afterwards, and they were never completed. [42] The "096" and "097" designators were given to structural test articles that were canceled, but while they exist in some NASA records, the NASA History Office has no official record of STA-096 and STA-097. [43]

Orbiter vehiclesTest articles
DesignationVehicleDesignationVehicle
OV-099 [lower-alpha 1] Challenger OV-095 Shuttle Avionics Integration Laboratory (SAIL) mockup
OV-101 Enterprise STA-096ECLSS Structural Test Article
OV-102 Columbia STA-097Vibro Acoustic Structural Test Article
OV-103 Discovery OV-098 [lower-alpha 2] Pathfinder
OV-104 Atlantis MPTA-098 Main Propulsion Test Article
OV-105 Endeavour
  1. Formerly known as STA-099.
  2. Retroactive honorary designation

Operational orbiters

Operational Orbiters
NamePicture OVD First flightNumber of flightsLast flightStatus [44] Ref.
Atlantis STS-125 Atlantis Liftoff.jpg OV-104 STS-51-J
October 3–7, 1985
33 STS-135
July 8–21, 2011
Retired.
Displayed at Kennedy Space Center Visitor Complex in Florida.
[45]
Challenger Space Shuttle Challenger (04-04-1983).JPEG OV-099 STS-6
April 4–9, 1983
10 STS-51-L
January 28, 1986
Destroyed.
Disintegrated due to faulty solid rocket booster on January 28, 1986. Debris buried at Cape Canaveral LC-31.
[46]
Columbia Space Shuttle Columbia launching.jpg OV-102 STS-1
April 12–14, 1981
28 STS-107
January 16 – February 1, 2003
Destroyed.
Broke up on reentry due to wing damage during launch on February 1, 2003. Remains of orbiter stored at Vehicle Assembly Building.
Discovery STS-133 Discovery Lift Off Launch Pad 39A KSC.jpg OV-103 STS-41-D
August 30, 1984
39 STS-133
February 24, 2011
Retired.
Displayed at the Steven F. Udvar-Hazy Center in Chantilly, Virginia.
[47]
Endeavour STS-127 Launch 04.jpg OV-105 STS-49
May 7, 1992
25 STS-134
May 16, 2011
Retired.
Displayed at California Science Center in Los Angeles, California.
[48]

Test articles

Test Articles
Picture OVD NameNotes
SAIL cockpit simulator (JSC2011-E-067673).jpg OV-095-Simulator for actual flight hardware and software system testing and training located in the Shuttle Avionics Integration Laboratory
Space Shuttle Orbiter model Pathfinder.jpg OV-098 [lower-alpha 1] Pathfinder Orbiter simulator for moving and handling tests. Currently on display at the U.S. Space & Rocket Center.
MPTA-098.jpg MPTA-098 Testbed for propulsion and fuel delivery systems
Space Shuttle Challenger as STA-099.jpg STA-099Structural test article used for stress and thermal testing, later became Challenger
Enterprise free flight.jpg OV-101 Enterprise First atmospheric free flight August 12, 1977. Used for approach and landing tests, not suitable for spaceflight. Formerly located at the Steven F. Udvar-Hazy Center, the orbiter is currently located on the flight deck of the USS Intrepid (CV-11) at the Intrepid Sea, Air & Space Museum in New York City. [26]

Mockups

In addition to the operational orbiters and test articles produced for use in the Shuttle program, there are also various mockup replicas on display throughout the United States:

Mockups
NamePictureReplicatesLocationStatus
Adventure NASA Adventure-1.JPG Forward fuselage Space Center Houston Removed
America Space Shuttle America.jpg Most except right-wing Six Flags Great America Removed
Independence Shuttle Independence and NASA 905 at Space Center Houston.jpg Full Space Center Houston On Display
Inspiration (California) [49] Space Shuttle Inspiration (California) forwards fuselage.jpg Most except left-wing, vertical stabilizer, and payload bay doors Columbia Memorial Space Center In storage
Inspiration (Florida) [50] Titusville Astronaut HoF Museum shuttle01.jpg Full Shuttle Landing Facility On Display
Resolution! [51] Space Shuttle Resolution.jpg Forward fuselage Columbia Memorial Space Center Abandoned

Flight statistics

Key
 Test vehicle
 Lost
ShuttleDesignationFlightsFlight timeOrbitsLongest flightFirst flightLast flight Mir
dockings
ISS dockingsSources
FlightDateFlightDate
EnterpriseOV-101500d 00h 19m00d 00h 05m ALT-12 12 August 1977 ALT-16 26 October 1977 [52] [53] [54] [55]
ColumbiaOV-10228300d 17h 47m 15s4,80817d 15h 53m 18s STS-1 12 April 1981 STS-107 16 January 200300 [52] [53] [56] [57] [58]
ChallengerOV-0991062d 07h 56m 15s99508d 05h 23m 33s STS-6 4 April 1983 STS-51-L 28 January 198600 [52] [53] [59] [60]
Discovery OV-10339364d 22h 39m 29s5,83015d 02h 48m 08s STS-41-D 30 August 1984 STS-133 24 February 2011113 [52] [53] [61] [62]
Atlantis OV-10433306d 14h 12m 43s4,84813d 20h 12m 44s STS-51-J 3 October 1985 STS-135 8 July 2011712 [52] [53] [63] [64]
Endeavour OV-10525296d 03h 34m 02s4,67716d 15h 08m 48s STS-49 7 May 1992 STS-134 16 May 2011112 [52] [53] [65] [66]
Total1351,330d 18h 9m 44s21,158937

Flight history timeline

Space Shuttle orbiter

See also

Notes

  1. Unofficial honorary designation

Related Research Articles

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and space plane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development.

Space Shuttle <i>Challenger</i> Former Space Shuttle orbiter (1983–1986)

Space Shuttle Challenger (OV-099) was a Space Shuttle orbiter manufactured by Rockwell International and operated by NASA. Named after the commanding ship of a nineteenth-century scientific expedition that traveled the world, Challenger was the second Space Shuttle orbiter to fly into space after Columbia, and launched on its maiden flight in April 1983. It was destroyed in January 1986 soon after launch in a disaster that killed all seven crewmembers aboard.

Space Shuttle <i>Enterprise</i> Space Shuttle test vehicle, used for glide tests

Space Shuttle Enterprise was the first orbiter of the Space Shuttle system. Rolled out on September 17, 1976, it was built for NASA as part of the Space Shuttle program to perform atmospheric test flights after being launched from a modified Boeing 747. It was constructed without engines or a functional heat shield. As a result, it was not capable of spaceflight.

Space Shuttle <i>Columbia</i> Former Space Shuttle orbiter (1981–2003)

Space Shuttle Columbia (OV-102) was a Space Shuttle orbiter manufactured by Rockwell International and operated by NASA. Named after the first American ship to circumnavigate the upper North American Pacific coast and the female personification of the United States, Columbia was the first of five Space Shuttle orbiters to fly in space, debuting the Space Shuttle launch vehicle on its maiden flight on April 12, 1981 and becoming the first ever spacecraft to be re-used after its first flight when it launched on STS-2 on November 12, 1981. As only the second full-scale orbiter to be manufactured after the Approach and Landing Test vehicle Enterprise, Columbia retained unique external and internal features compared to later orbiters, such as test instrumentation and distinctive black chines. In addition to a heavier aft fuselage and the retention of an internal airlock throughout its lifetime, these made Columbia the heaviest of the five spacefaring orbiters; around 1,000 kilograms heavier than Challenger and 3,600 kilograms heavier than Endeavour when originally constructed. Columbia also carried ejection seats based on those from the SR-71 during its first six flights until 1983, and from 1986 onwards carried an imaging pod on its vertical stabilizer.

Space Shuttle <i>Discovery</i> Retired Space Shuttle orbiter (1984–2011)

Space Shuttle Discovery is a retired American Space Shuttle orbiter. The spaceplane was one of the orbiters from NASA's Space Shuttle program and the third of five fully operational orbiters to be built. Its first mission, STS-41-D, flew from August 30 to September 5, 1984. Over 27 years of service it launched and landed 39 times, aggregating more spaceflights than any other spacecraft to date. The Space Shuttle launch vehicle had three main components: the Space Shuttle orbiter, a single-use central fuel tank, and two reusable solid rocket boosters. Nearly 25,000 heat-resistant tiles cover the orbiter to protect it from high temperatures on re-entry.

Space Shuttle <i>Atlantis</i> Retired Space Shuttle orbiter (1985–2011)

Space Shuttle Atlantis is a retired Space Shuttle orbiter vehicle which belongs to NASA, the spaceflight and space exploration agency of the United States. Atlantis was manufactured by the Rockwell International company in Southern California and was delivered to the Kennedy Space Center in Eastern Florida in April 1985. Atlantis is also the fourth operational and the second-to-last Space Shuttle built. Its maiden flight was STS-51-J made from October 3 to 7, 1985.

Space Shuttle <i>Endeavour</i> Retired Space Shuttle orbiter (1992–2011)

Space Shuttle Endeavour is a retired orbiter from NASA's Space Shuttle program and the fifth and final operational Shuttle built. It embarked on its first mission, STS-49, in May 1992 and its 25th and final mission, STS-134, in May 2011. STS-134 was expected to be the final mission of the Space Shuttle program, but with the authorization of STS-135 by the United States Congress, Atlantis became the last shuttle to fly.

<span class="mw-page-title-main">Space Shuttle program</span> 1972–2011 United States human spaceflight program

The Space Shuttle program was the fourth human spaceflight program carried out by the U.S. National Aeronautics and Space Administration (NASA), which accomplished routine transportation for Earth-to-orbit crew and cargo from 1981 to 2011. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development, as a proposed nuclear shuttle in the plan was cancelled in 1972. It flew 135 missions and carried 355 astronauts from 16 countries, many on multiple trips.

<span class="mw-page-title-main">STS-1</span> First Space Shuttle mission, first orbital flight of the Space Shuttle Columbia

STS-1 was the first orbital spaceflight of NASA's Space Shuttle program. The first orbiter, Columbia, launched on April 12, 1981, and returned on April 14, 1981, 54.5 hours later, having orbited the Earth 37 times. Columbia carried a crew of two—commander John W. Young and pilot Robert L. Crippen. It was the first American crewed space flight since the Apollo–Soyuz Test Project (ASTP) in 1975. STS-1 was also the maiden test flight of a new American spacecraft to carry a crew, though it was preceded by atmospheric testing (ALT) of the orbiter and ground testing of the Space Shuttle system.

<span class="mw-page-title-main">STS-9</span> 1983 American crewed spaceflight and first flight with Spacelab

STS-9 was the ninth NASA Space Shuttle mission and the sixth mission of the Space Shuttle Columbia. Launched on November 28, 1983, the ten-day mission carried the first Spacelab laboratory module into orbit.

<span class="mw-page-title-main">STS-2</span> 1981 American crewed spaceflight

STS-2 was the second Space Shuttle mission conducted by NASA, and the second flight of the orbiter Columbia. The mission, crewed by Joe H. Engle and Richard H. Truly, launched on November 12, 1981, and landed two days later on November 14, 1981. STS-2 marked the first time that a crewed, reusable orbital vehicle returned to space. This mission tested the Shuttle Imaging Radar (SIR) as part of the OSTA-1 payload, along with a wide range of other experiments including the Shuttle robotic arm, commonly known as Canadarm. Other experiments or tests included Shuttle Multispectral Infrared Radiometer, Feature Identification and Location Experiment, Measurement of Air Pollution from Satellites, Ocean Color Experiment, Night/Day optical Survey of Lightning, Heflex Bioengineering Test, and Aerodynamic Coefficient Identification Package (ACIP). One of the feats accomplished was various tests on the Orbital Maneuvring System (OMS) including starting and restarting the engines while in orbit and various adjustments to its orbit. The OMS tests also helped adjust the Shuttle's orbit for use of the radar. During the mission, President Reagan called the crew of STS-2 from Mission Control Center in Houston.

<span class="mw-page-title-main">STS-27</span> 1988 near-disastrous American crewed spaceflight to deploy Lacrosse 1

STS-27 was the 27th NASA Space Shuttle mission, and the third flight of Space Shuttle Atlantis. Launching on December 2, 1988, on a four-day mission, it was the second shuttle flight after the Space Shuttle Challenger disaster of January 1986. STS-27 carried a classified payload for the U.S. Department of Defense (DoD), ultimately determined to be a Lacrosse surveillance satellite. The vessel's heat shielding was substantially damaged during lift-off, and crew members thought that they would die during reentry. This was a situation that was similar to the one that would prove fatal 15 years later on STS-107. Compared to the damage that Columbia sustained on STS-107, Atlantis experienced more extensive damage. However, this was over less critical areas and the missing tile was over an antenna which gave extra protection to the spacecraft structure. The mission landed successfully, although intense heat damage needed to be repaired.

<span class="mw-page-title-main">STS-28</span> 1989 American crewed spaceflight for the Department of Defense

STS-28 was the 30th NASA Space Shuttle mission, the fourth shuttle mission dedicated to United States Department of Defense (DoD) purposes, and the eighth flight of Space Shuttle Columbia. The mission launched on August 8, 1989, and traveled 3,400,000 km (2,100,000 mi) during 81 orbits of the Earth, before landing on runway 17 of Edwards Air Force Base, California, on August 13, 1989. STS-28 was also Columbia's first flight since January 1986, when it had flown STS-61-C, the mission directly preceding the Challenger disaster of STS-51-L. The mission details of STS-28 are classified, but the payload is widely believed to have been the first SDS-2 relay communications satellite. The altitude of the mission was between 295 km (183 mi) and 307 km (191 mi).

<span class="mw-page-title-main">STS-38</span> 1990 American crewed spaceflight for the Department of Defense

STS-38 was a Space Shuttle mission by NASA using the Space Shuttle Atlantis. It was the 37th shuttle mission and carried a classified payload for the U.S. Department of Defense (DoD). It was the seventh flight for Atlantis and the seventh flight dedicated to the Department of Defense. The mission was a 4-day mission that traveled 3,291,199 km (2,045,056 mi) and completed 79 revolutions. Atlantis landed at Kennedy Space Center's Shuttle Landing Facility's runway 33. The launch was originally scheduled for July 1990 but was rescheduled due to a hydrogen leak found on Space ShuttleColumbia during the STS-35 countdown. During a rollback to the Orbiter Processing Facility Atlantis was damaged during a hail storm. The eventual launch date of November 15, 1990, was set due to a payload problem. The launch window was between 18:30 and 22:30 EST. The launch occurred at 18:48:13 EST. The mission ended with a landing at the Shuttle Landing Facility, marking the first time in five years that a mission returned to the Kennedy Space Center since STS-51-D. This also marked the first time Atlantis ended a mission at the Kennedy Space Center.

<span class="mw-page-title-main">STS-39</span> 1991 American crewed spaceflight for the Department of Defense

STS-39 was the twelfth mission of the NASA Space Shuttle Discovery, and the 40th orbital shuttle mission overall. The primary purpose of the mission was to conduct a variety of payload experiments for the U.S. Department of Defense (DoD).

<span class="mw-page-title-main">STS-95</span> 1998 American crewed spaceflight

STS-95 was a Space Shuttle mission launched from Kennedy Space Center, Florida on 29 October 1998, using the orbiter Discovery. It was the 25th flight of Discovery and the 92nd mission flown since the start of the Space Shuttle program in April 1981. It was a highly publicized mission due to former Project Mercury astronaut and United States Senator John H. Glenn Jr.'s return to space for his second space flight. At age 77, Glenn became the oldest person to go into space, a record that remained unbroken for 23 years until 82-year-old Wally Funk flew on a suborbital flight on Blue Origin NS-16, launching on 20 July 2021, which in turn was broken by William Shatner at age 90 on 13 October 2021 and then by Ed Dwight on May 19 2024. Glenn, however, remains the oldest person to reach Earth orbit. This mission is also noted for inaugurating ATSC HDTV broadcasting in the U.S., with live coast-to-coast coverage of the launch. In another first, Pedro Duque became the first Spaniard in space.

Space Shuttle missions designated STS-3xx were rescue missions which would have been mounted to rescue the crew of a Space Shuttle if their vehicle was damaged and deemed unable to make a successful reentry. Such a mission would have been flown if Mission Control determined that the heat shielding tiles and reinforced carbon-carbon panels of a currently flying orbiter were damaged beyond the repair capabilities of the available on-orbit repair methods. These missions were also referred to as Launch on Demand (LOD) and Contingency Shuttle Crew Support. The program was initiated following loss of Space Shuttle Columbia in 2003. No mission of this type was launched during the Space Shuttle program.

<span class="mw-page-title-main">Extended Duration Orbiter</span> Space Shuttle hardware

The Extended Duration Orbiter (EDO) program was a project by NASA to prepare for long-term (months) microgravity research aboard Space Station Freedom, which later evolved into the International Space Station. Scientists and NASA needed practical experience in managing progressively longer times for their experiments. The original Space Shuttle configuration usually provided a week to ten days of spaceflight. Several research projects and hardware components were part of the project, of which the EDO-pallet was one of the most visible, contracted by Rockwell International.

<span class="mw-page-title-main">STS-135</span> 2011 American crewed spaceflight to the ISS and final flight of the Space Shuttle program

STS-135 was the 135th and final mission of the American Space Shuttle program. It used the orbiter Atlantis and hardware originally processed for the STS-335 contingency mission, which was not flown. STS-135 launched on July 8, 2011, and landed on July 21, 2011, following a one-day mission extension. The four-person crew was the smallest of any shuttle mission since STS-6 in April 1983. The mission's primary cargo was the Multi-Purpose Logistics Module (MPLM) Raffaello and a Lightweight Multi-Purpose Carrier (LMC), which were delivered to the International Space Station (ISS). The flight of Raffaello marked the only time that Atlantis carried an MPLM.

<span class="mw-page-title-main">Orbital Maneuvering System</span> Hypergolic orbital maneuvering engines used on NASAs Space Shuttle

The Orbital Maneuvering System (OMS) is a system of hypergolic liquid-propellant rocket engines used on the Space Shuttle and the Orion MPCV. Designed and manufactured in the United States by Aerojet, the system allowed the orbiter to perform various orbital maneuvers according to requirements of each mission profile: orbital injection after main engine cutoff, orbital corrections during flight, and the final deorbit burn for reentry. From STS-90 onwards the OMS were typically ignited part-way into the Shuttle's ascent for a few minutes to aid acceleration to orbital insertion. Notable exceptions were particularly high-altitude missions such as those supporting the Hubble Space Telescope (STS-31) or those with unusually heavy payloads such as Chandra (STS-93). An OMS dump burn also occurred on STS-51-F, as part of the Abort to Orbit procedure.

References

  1. "Facts About the Space Shuttles". NASA. Archived from the original on April 17, 2019. Retrieved March 16, 2008.
  2. 1 2 Stevens, William K.; Times, Special To the New York (April 6, 1981). "New Generation of Astronauts Poised for Shuttle Era". The New York Times. p. A1. ISSN   0362-4331 . Retrieved July 14, 2020.
  3. 1 2 "Rockwell International Space Division 1975 Promo Film 68804". YouTube. PeriscopeFilm LLC. January 6, 2020. Retrieved July 3, 2024.
  4. 1 2 3 "Orbiter Manufacturing and Assembly". NASA. Archived from the original on April 25, 2021. Retrieved August 19, 2012. Rockwell's Palmdale assembly facility was where all the individual parts, pieces and systems (many of which were built by various subcontractors) came together and were assembled and tested
  5. "Marquardt Van Nuys Site". Mark A Reynosa Website. June 14, 2000. Retrieved July 3, 2024.
  6. "Rocketdyne plant that built world's most powerful rocket engines being razed". Canoga Park Neighborhood Council. August 8, 2016. Retrieved July 3, 2024.
  7. "HSF – The Shuttle". NASA. Archived from the original on February 10, 2001. Retrieved July 17, 2009.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. Young, John W.; Hansen, James R. (2012). "Part IV. The Shuttle Era". Forever Young: A Life of Adventure in Air and Space (Kindle eBook). University Press of Florida. ISBN   978-0-8130-4281-7. OCLC   1039310141. In the design plans, we saw that the RCS would have big doors that opened outward. The problem was, if those doors failed to close, the orbiter would be lost as it was coming back through the atmosphere. I wrote a 'review item disposition' (RID) asking NASA to eliminate the outward-opening doors.
  9. "Seat, Commander/Pilot, Space Shuttle". Smithsonian National Air and Space Museum. Retrieved July 30, 2024.
  10. "Human Space Flight (HSF) – Space Shuttle". Archived from the original on August 31, 2000.
  11. "Orbital Maneuvering System". NASA. Archived from the original on June 29, 2011. Retrieved July 17, 2009.
  12. Kulkarni, Nilesh; Krishnakumar, Kalmaje (2005). Spacecraft Guidance, Navigation, and Control Requirements for an Intelligent Plug-n-Play Avionics (PAPA) Architecture. AIAA Infotech@Aerospace. September 26–29, 2005. Arlington, Virginia. doi:10.2514/6.2005-7123. hdl: 2060/20060019188 . AIAA 2005-7123.
  13. "Electrical Power System". Shuttle Reference Manual. NASA Human Spaceflight. Archived from the original on May 4, 2001. Retrieved February 1, 2013.
  14. "General-Purpose Computers". NASA. Archived from the original on June 8, 2001. Retrieved January 18, 2014.
  15. Lohr, Steve (February 7, 2003). "Loss of the Shuttle: Technology; Computers Driving Shuttle Are to Be Included in Inquiry". The New York Times . Retrieved January 18, 2014.
  16. "Automotive Design & Manufacturing". NASA Tech Briefs. 40 Years of Innovations. 22 (9): 26. September 1998. hdl:2060/20110003618.
  17. 1 2 Oakes, Ryan (June 2, 2003). "Space Shuttle Tiles". UW Departments Web Server. Retrieved March 24, 2023.
  18. Lyle, Karen H.; Fasanella, Edwin L. (2009). "Permanent set of the Space Shuttle Thermal Protection System Reinforced Carbon–Carbon material". Composites Part A: Applied Science and Manufacturing. 40 (6–7). Elsevier BV: 702–708. doi:10.1016/j.compositesa.2009.02.016. ISSN   1359-835X.
  19. Finckenor, M. M.; Dooling, D. (April 1999). "Multilayer Insulation Material Guidelines" (PDF). Retrieved April 1, 2023.
  20. "STS-6 Press Information" (PDF). Rockwell International – Space Transportation & Systems Group. March 1983. p. 7. Retrieved March 16, 2023. Orbital maneuvering system/reaction control system low temperature reusable surface insulation tiles (LRSI) replaced with advanced flexible reusable surface insulation (AFRSI) consisting of a sewn composite quilted fabric blanket with same silica tile material sandwiched between outer and inner blanket.
  21. "Orbiter Thermal Protection System, Thermal Materials" (PDF). NASA. 2006. p. 3. Archived from the original (PDF) on February 12, 2023. Retrieved March 16, 2023.
  22. "STS-113 Space Shuttle Processing Questions & Answers (NASA KSC)". NASA. November 15, 2002. Archived from the original on January 14, 2010. Retrieved July 17, 2009.
  23. Fan, Linjin (January 11, 2008). "Mysterious $100 'supernote' counterfeit bills appear across world". The Kansas City Star. Archived from the original on January 17, 2008.
  24. "Space Shuttle Night Landings". NASA. Retrieved July 23, 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  25. Helvetica (Documentary). September 12, 2007.
  26. 1 2 Weaver, David (April 12, 2011). "NASA Announces New Homes For Shuttle Orbiters After Retirement". NASA. Archived from the original on March 24, 2023. Retrieved April 12, 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  27. "Space Shuttle Crew Compartment Trainer". National Museum of the United States Air Force. March 14, 2016. Retrieved May 1, 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  28. Hutchinson, Lee (June 26, 2015). "A detailed photo tour of NASA's space shuttle cockpit trainer". Ars Technica. Retrieved May 1, 2020.
  29. Pearlman, Robert (July 1, 2012). "NASA Space Shuttle Trainer Lands at seattle's Museum of Flight". Space.com. Retrieved May 1, 2020.
  30. Mullen, W. (April 12, 2011). "No shuttle for Adler, but museum will fly with simulator". Chicago Tribune. Retrieved May 1, 2020.
  31. Pearlman, Robert (August 3, 2016). "'Sooner State' shuttle: Stafford Museum to display NASA simulator in Oklahoma". collectSPACE. Retrieved May 1, 2020.
  32. Pearlman, Robert (December 29, 2011). "Retired Space Shuttle Simulator to 'Fly' Again at Texas A&M". Space.com. Retrieved May 1, 2020.
  33. Winston, Hannah. "A piece of NASA history lands at Keystone Heights museum". The Gainesville Sun. Retrieved May 1, 2020.
  34. Pearlman, Robert (December 3, 2010). "NASA Offers Space Shuttle Tiles to Schools". Space.com. Retrieved May 1, 2020.
  35. "Shuttle Technical Facts". Tribute to the Space Shuttle. European Space Agency. Retrieved January 5, 2019.
  36. Wilhite, Alan W. (June 1977). Analysis of Separation of the Space Shuttle Orbiter from a Large Transport Airplane. NASA/Langley Research Center. p. 10. hdl:2060/19770018245. NASA TM X-3492; 77N-25189.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  37. 1 2 Chaffee, Norman, ed. (January 1985). Space Shuttle Technical Conference, Part 1. NASA. hdl:2060/19850008580. NASA CP-2342-Pt-1; N85-16889.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  38. Hale, Wayne; Lane, Helen; Chapline, Gail; Lulla, Kamlesh, eds. (2011). "The Space Shuttle and Its Operations". Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010. NASA. p. 59. hdl:2060/20110011792. ISBN   978-0-16-086846-7. NASA SP-2010-3409.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  39. Wade, Mark. "Space Shuttle". Astronautix.com. Archived from the original on July 12, 2016. Retrieved January 5, 2019.
  40. "Chandra X-ray Observatory Quick Facts". NASA/Marshall Space Flight Center. August 1999. Archived from the original on February 12, 2022. Retrieved January 5, 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  41. Kitmacher, Gary H., ed. (August 2006). "Transportation/Logistics" (PDF). Reference Guide to the International Space Station. NASA. ISBN   0-9710327-2-6. NASA SP-2006-557.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  42. SPACE TRANSPORTATION SYSTEM HAER No. TX-116, page 59, note 205 Retrieved June 8, 2017 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  43. SPACE TRANSPORTATION SYSTEM HAER No. TX-116, page 55 Retrieved June 24, 2014 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  44. "Orbiter Vehicles". NASA. Archived from the original on February 9, 2021. Retrieved March 13, 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  45. "Atlantis (OV-104)". NASA. Archived from the original on August 28, 2011. Retrieved March 13, 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  46. "Challenger (STA-099, OV-99)". NASA. Archived from the original on May 23, 2019. Retrieved March 13, 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  47. "Discovery (OV-103)". NASA. Archived from the original on February 9, 2021. Retrieved March 13, 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  48. "Endeavour (OV-105)". NASA. Archived from the original on May 1, 2011. Retrieved March 13, 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  49. "Historic Space Shuttle Mockup Stored in Downey, California".
  50. Pearlman, Robert Z. (April 29, 2016). "Replica on the runway: Mock orbiter lands on real space shuttle strip". collectSPACE.
  51. "A "Resolution" That Could Not be Kept". September 18, 2012.
  52. 1 2 3 4 5 6 Chen, Adam (2012). Wallack, William; Gonzalez, George (eds.). Celebrating 30 years the Space Shuttle Program. Washington, D.C., United States: NASA. p. 280. ISBN   978-0-16-090202-4 . Retrieved October 11, 2012.
  53. 1 2 3 4 5 6 "NASA Facts: Space Shuttle Era Facts" (PDF). John F. Kennedy Space Center . Retrieved December 14, 2012.
  54. "Enterprise (OV-101)". National Aeronautics and Space Administration . Retrieved October 19, 2012.
  55. "Fast Facts on the Space Shuttle Enterprise". Fox News Insider. Fox News. Archived from the original on March 14, 2016. Retrieved December 14, 2012.
  56. "Space: The Space Shuttle Columbia". The New York Times . Retrieved October 19, 2012.
  57. "Fast Facts: Space Shuttle Columbia". Fox News. February 2, 2003. Archived from the original on November 19, 2012. Retrieved December 14, 2012.
  58. "Columbia (OV-102)". National Aeronautics and Space Administration . Retrieved October 27, 2012.
  59. "Challenger (STA-099, OV-99)". National Aeronautics and Space Administration . Retrieved October 27, 2012.
  60. "Space Shuttle Challenger Facts". Florida Today . Retrieved December 14, 2012.
  61. Wall, Mike (April 19, 2012). "Space Shuttle Discovery: 5 Surprising Facts About NASA's Oldest Orbiter". Space.com . Retrieved December 15, 2012.
  62. "Orbiter, Space Shuttle, OV-103, Discovery". Smithsonian National Air and Space Museum . Retrieved February 26, 2016.
  63. Fletcher, Dan (May 14, 2010). "Space Shuttle Atlantis Blasts Off: Five Fast Facts". Time . Retrieved December 15, 2012.
  64. "Shuttle Launch Facts: 15 Things to Know about Space Shuttle Atlantis' Mission". Florida Today . Retrieved December 15, 2012.
  65. "The Space Shuttle Endeavour Fact Sheet". CBS News . Retrieved December 15, 2012.
  66. "Space Shuttle Endeavour Facts". Florida Today . Retrieved December 15, 2012.