Shuttle-Derived Heavy Lift Launch Vehicle

Last updated
Artist impression of the Shuttle-Derived HLV concept Nasansc.JPG
Artist impression of the Shuttle-Derived HLV concept

The Shuttle-Derived Heavy Lift Launch Vehicle ("HLV") was an alternate super heavy-lift launch vehicle proposal for the NASA Constellation program. It was first presented to the Augustine Commission on 17 June 2009.

Contents

Based on the Shuttle-C concept which has been the subject of various studies since the 1980s, the HLV was a Shuttle-Derived Launch Vehicle (SDLV) that proposed to replace the winged Orbiter from the Space Shuttle stack with a side-mounted payload carrier. The Space Shuttle's External Tank (ET) and four-segment Shuttle Solid Rocket Boosters (SRBs) would have remained the same.

According to initial estimates, the HLV could have been developed within 412 years for about US$6.6 billion, [1] which was about 20% of the costs estimated for the Ares I and Ares V vehicle development.

Origin

An artist's conception of a Shuttle-C launching at night Shuttle-c launch painting.jpg
An artist's conception of a Shuttle-C launching at night

An uncrewed side-mounted concept of the Space Shuttle named Shuttle-C was investigated between 1984 and 1995. [2] The Shuttle-C cargo only option was not funded in the 1980s and 1990s due to NASA's budgetary constraints. After the Space Shuttle Columbia disaster, a two-year industry study was prepared in 2004 and 2005 to further investigate the concept as a Shuttle replacement. The Exploration Systems Architecture Study (ESAS) in 2005 also investigated a Shuttle-C option for Project Constellation, again only in an uncrewed version. All these concepts intended the side-mounted carrier to be an autonomous spacecraft which would detach from the External Tank after main engine cut-off, similarly to the Space Shuttle. Some of the studies included the reuse of the Space Shuttle Main Engines on this side-mounted carrier. None of the concepts involved in-ascent fairing separation.[ citation needed ]

The HLV proposal presented on 17 June 2009 was partly based on the original Shuttle-C proposal. The main differences were that the side-mounted carrier could not detach from the ET, and proposing to also carry crews on the HLV. The proposal included work from about 60 NASA engineers. [3]

HLV specifications

A diagram of the Shuttle-Derived Heavy Lift Launch Vehicle, Block I configuration High Confidence Heavy Lift Launch Vehicle Diagram.jpg
A diagram of the Shuttle-Derived Heavy Lift Launch Vehicle, Block I configuration

The HLV was proposed to be a 4,600,000 pounds (2,100,000 kg) vehicle at liftoff with two 4-segment Space Shuttle Solid Rocket Boosters weighing about 2,600,000 pounds (1,200,000 kg) providing a total thrust of 5,900,000 pounds-force (26 MN) at sea level and the Space Shuttle External Tank weighing about 1,660,000 pounds (750,000 kg) fueled.

The side-mounted carrier was to include a Shuttle-derived 'boattail' carrying the three Space Shuttle Main Engines and other propulsion elements. A 7.5 meters (25 ft) diameter payload carrier with a separable fairing weighing 51,000 pounds (23,000 kg) would take up the space usually occupied by the rest of the orbiter. The basic vehicle would not have an upper stage, requiring the payload to perform orbit circularization and possibly trans-lunar injection burns. [4]

The only completely new hardware development to be required for the HLV was the side-mounted carrier. All other components used on the HLV were previously in use with the Space Shuttle, and up to the first six flights of the vehicle would have reused spare parts and salvaged functioning hardware from the orbiters, including existing avionics modules, flight software, and SSMEs (Block I flights). Virtually no change to the existing Space Shuttle infrastructure, from the Vehicle Assembly Building to the External Tank barge to the launch pads, was to be required.[ citation needed ]

Upper stage

To be usable for the envisioned lunar flights, the HLV would require an upper stage. The use of the J-2X engine that was under development for the Ares I launch vehicle was proposed for this upper stage. It would have provided nearly 300,000 pounds-force (1.3 MN) (vacuum) and was intended to have a specific impulse (Isp) of 448 sec.[ citation needed ]

Alternatively, the United Launch Alliance (ULA) proposed that their Dual Thrust Axis Lander (DTAL) could fit in a side mount payload shroud. The ULA ACE 41 and ACE 71 upper stage/fuel depot concepts could have also fitted inside a side mount payload shroud, and the ACE 71 at 75 metric tons (83 short tons) was well within the side mount shuttle derived vehicle's payload capacity. [5]

Performance

The HLV's 4-segment SRBs were to deliver a specific impulse (Isp) of 267 sec and a thrust of 5,900,000 pounds-force (26 MN) and burn for about 155 seconds. The SSME main engines were to be flown at 104.5% and deliver a specific impulse (Isp) of 452 sec and 1,500,000 pounds-force (6.7 MN) (vacuum) and burn for about 500 seconds (depending on the mission profile). The payload mass for different missions was envisioned as follows: [6]

Mission profile

In contrast to Shuttle-C, no part of the vehicle (except for the 4-segment SRBs) would have been recoverable and reusable. The HLV could have used a different flight profile than Shuttle because of a lack of wings and associated load limits. The payload fairing 23,000 pounds (10,000 kg) was to be jettisoned 185 seconds into the flight at about 57 nautical miles (106 km) altitude. The SSME main engines were not to be reused and thus could be simplified, and new engines would have to be produced for each vehicle. For lunar missions, the HLV proposal envisioned suborbital staging at 30 nautical miles (56 km) × 120 nautical miles (220 km) of the vehicle to increase mass through TLI (trans-lunar injection) with two burns of the upper stage (a suborbital burn and an additional TLI burn).[ citation needed ]

Lunar mission architecture

Lunar mission scenario with the HLV, a lunar lander and the Orion spacecraft Shuttleclunar.svg
Lunar mission scenario with the HLV, a lunar lander and the Orion spacecraft

While the HLV was designed to provide crew and cargo missions to the ISS, its primary aim would have been to replace the Ares I – Ares V lunar architecture. The rudimentary mission architecture used a Lunar Orbit Rendezvous profile. Two HLVs were to be launched for the completion of one mission. The first HLV was to be launched with the lunar lander and immediately place the lunar lander on a trans-lunar injection. The lunar lander would have had a net mass of 35 metric tons after TLI, and would have inserted itself into a low lunar orbit (LLO). In LLO, the lunar lander would weigh about 28 metric tons. [6]

The second HLV was to place an Orion spacecraft and crew to trans-lunar injection. The 20 metric ton Orion spacecraft would remain attached to the upper stage, which was to insert the Orion spacecraft into LLO and dock with the lunar lander.[ citation needed ]

Growth options

The HLV would have had limited growth option. While 5-segment SRBs could have been used on the vehicle, they would have required significant re-engineering to yield 7 metric tons more to lower Earth orbit. Other growth options included an upgrade of the SSME to 106% or 109% thrust level or a switch from the J-2X upper engine to an air-startable SSME. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and spaceplane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development. The first (STS-1) of four orbital test flights occurred in 1981, leading to operational flights (STS-5) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on a total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle-Mir program with Russia, and participated in construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time was 1,323 days.

<span class="mw-page-title-main">Space Shuttle program</span> 1972–2011 United States human spaceflight program

The Space Shuttle program was the fourth human spaceflight program carried out by the U.S. National Aeronautics and Space Administration (NASA), which accomplished routine transportation for Earth-to-orbit crew and cargo from 1981 to 2011. Its official name, Space Transportation System (STS), was taken from a 1969 plan for a system of reusable spacecraft of which it was the only item funded for development. It flew 135 missions and carried 355 astronauts from 16 countries, many on multiple trips.

<span class="mw-page-title-main">Marshall Space Flight Center</span> Rocketry and spacecraft propulsion research center

The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama, is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first mission was developing the Saturn launch vehicles for the Apollo program. Marshall has been the lead center for the Space Shuttle main propulsion and external tank; payloads and related crew training; International Space Station (ISS) design and assembly; computers, networks, and information management; and the Space Launch System (SLS). Located on the Redstone Arsenal near Huntsville, MSFC is named in honor of General of the Army George C. Marshall.

<span class="mw-page-title-main">Constellation program</span> Cancelled 2005–2010 NASA human spaceflight program

The Constellation program was a crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.

<span class="mw-page-title-main">Space Shuttle Solid Rocket Booster</span> Solid propellant rocket used to launch Space Shuttle orbiter.

The Space Shuttle Solid Rocket Booster (SRB) was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight. A pair of these provided 85% of the Space Shuttle's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned and parachuted into the Atlantic Ocean where they were recovered, examined, refurbished, and reused.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

<span class="mw-page-title-main">Space Shuttle external tank</span> Component of the Space Shuttle launch vehicle

The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three RS-25 main engines in the orbiter. The ET was jettisoned just over 10 seconds after main engine cut-off (MECO) and it re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean, away from shipping lanes and were not recovered.

<span class="mw-page-title-main">Shuttle-derived vehicle</span> Launch vehicle built from Space Shuttle components

Shuttle-derived vehicles (SDV) are space launch vehicles and spacecraft that use components, technology, and infrastructure originally developed for the Space Shuttle program.

<span class="mw-page-title-main">Exploration Systems Architecture Study</span> NASA study

The Exploration Systems Architecture Study (ESAS) is the official title of a large-scale, system level study released by the National Aeronautics and Space Administration (NASA) in November 2005 of his goal of returning astronauts to the Moon and eventually Mars — known as the Vision for Space Exploration. The Constellation Program was cancelled in 2010 by the Obama Administration and replaced with the Space Launch System, later renamed as the Artemis Program in 2017 under the Trump Administration.

The Earth Departure Stage (EDS) is the name given to the proposed second stage of the Block 2 Space Launch System. The EDS is intended to boost the rocket's payload into a parking orbit around the Earth and from there send the payload out of low Earth orbit to its destination in a manner similar to that of the S-IVB rocket stage used on the Saturn V rockets that propelled the Apollo spacecraft to the Moon. Its development has been put on hold until stages capable of transferring heavy payloads to Mars are required.

<span class="mw-page-title-main">Ares V</span> Canceled NASA rocket key to Project Constellation

The Ares V was the planned cargo launch component of the cancelled NASA Constellation program, which was to have replaced the Space Shuttle after its retirement in 2011. Ares V was also planned to carry supplies for a human presence on Mars. Ares V and the smaller Ares I were named after Ares, the Greek god of war.

<span class="mw-page-title-main">Ares I</span> Canceled NASA rocket key to the Constellation program

Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the "Crew Launch Vehicle" (CLV).

<span class="mw-page-title-main">Athena (rocket family)</span> Lockheed Martin expendable launch system

Athena was a 1990s Lockheed Martin expendable launch system which underwent several name changes in its lifetime.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, with three stages, and powered with liquid fuel. It was flown from 1967 to 1973. It was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">DIRECT & Jupiter Rocket Family</span> Proposed family of US super heavy-lift launch vehicles

DIRECT was a late-2000s proposed alternative super heavy lift launch vehicle architecture supporting NASA's Vision for Space Exploration that would replace the space agency's planned Ares I and Ares V rockets with a family of Shuttle-Derived Launch Vehicles named "Jupiter". It was intended to be the alternative to the Ares I and Ares V rockets which were under development for the Constellation program, intended to develop the Orion spacecraft for use in Earth orbit, the Moon, and Mars.

<span class="mw-page-title-main">Liberty (rocket)</span> Launch vehicle design

Liberty was a 2011 launch vehicle concept proposed by Northrop Grumman Space Systems and Airbus Defence and Space for phase 2 of the NASA Commercial Crew Development (CCDev) program intended to stimulate development of privately operated crew vehicles to low Earth orbit.

Heavy-lift launch vehicle Launch vehicle capable of lifting between 20,000 to 50,000 kg into low Earth orbit

A heavy-lift launch vehicle, HLV or HLLV, is an orbital launch vehicle capable of lifting between 20,000 to 50,000 kg or between 20,000 to 100,000 kilograms into low Earth orbit (LEO). As of 2019, operational heavy-lift launch vehicles include the Ariane 5, the Long March 5, the Proton-M and the Delta IV Heavy. In addition, the Angara A5, the Falcon 9 Full Thrust, and the Falcon Heavy are designed to provide heavy-lift capabilities in at least some configurations but have not yet been proven to carry a 20-tonne payload into LEO. Several other heavy-lift rockets are in development. An HLV is between medium-lift launch vehicles and super heavy-lift launch vehicles.

A super heavy-lift launch vehicle can lift a super heavy payload to low Earth orbit. A super heavy payload is more than 50 metric tons (110,000 lb) by United States (NASA) classification or 100 metric tons (220,000 lb) by Russian classification. It is the most capable launch vehicle classification by mass to orbit, exceeding that of the heavy-lift launch vehicle classification. Only thirteen such payloads were successfully launched prior to 2022: twelve as part of the Apollo program before 1972 and one Energia launch in 1987. Planned crewed lunar and interplanetary missions often depend on these launch vehicles' payload capacity.

<span class="mw-page-title-main">OmegA</span> Canceled US launch vehicle

OmegA was a medium-lift to heavy-lift launch vehicle concept that spent several years in development by Northrop Grumman during 2016–2020, with that development substantially funded by the U.S. government. OmegA was intended for launching U.S. national security satellites, as part of the U.S. Department of the Air Force National Security Space Launch (NSSL) replacement program.

<span class="mw-page-title-main">Studied Space Shuttle designs</span> Launch vehicle study

During the lifetime of the Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These studies included different ways to increase shuttle payload capability, and crew capacity, and develop standalone reusable launch vehicles. A large focus of the program was on new shuttle boosters and an upgrade to the external tank but also looked to expand NASA's ability to launch deep space missions and build large modular space stations. Many of these concepts and studies would shape the concepts and programs of the 2000s such as the Constellation, Orbital Space Plane Program, and Artemis program.

References

  1. Borenstein, Seth (June 30, 2009). "NASA manager pitches a cheaper return-to-moon plan". Associated Press.
  2. "Shuttle-C". GlobalSecurity.org. Retrieved 2009-01-20.
  3. Keith Cowing (July 6, 2009). "More Internal Validation of Sidemount HLV". NASA Watch. Retrieved April 1, 2023.
  4. 1 2 3 "Shuttle-Derived Heavy Lift Launch Vehicle" (PDF). Review of United States Human Space Flight Plans Committee . NASA. June 17, 2009.
  5. "A Commercially Based Lunar Architecture" (PDF). Archived from the original (PDF) on 2009-11-04. Retrieved 2009-09-12.. ULA
  6. 1 2 "Will son of Shuttle-C replace NASA's Ares?". Flightglobal.com. 2009-06-29. Retrieved 2009-07-18.