Space Launch System

Last updated

Space Launch System
Artemis I Launch (NHQ202211160017).jpg
SLS Block 1 with the Orion spacecraft launching from Pad 39B
Function Super heavy-lift launch vehicle
Manufacturer
Country of originUnited States
Project cost US$26.4 billion
Cost per launchUS$2.5 billion
Cost per yearUS$2.6 billion (FY23)
Size
Height
  • Block 1: 98 m (322 ft) [a]
  • Block 1B/2: 111 m (365 ft) [a]
Diameter8.4 m (27.6 ft) [2]
Mass2,610,000 kg (5,750,000 lb) [3]
Stages
Maximum thrust
  • Block 1: 39 MN (8,800,000 lbf)
  • Block 1B: 40 MN (8,900,000 lbf)
  • Block 2: 42 MN (9,500,000 lbf)
Capacity
Payload to LEO
Altitude200 km (120 mi) [4]
Orbital inclination28.5°
Mass
  • Block 1: 70,000 kg (150,000 lb)
  • Block 1B: 105,000 kg (231,000 lb)
  • Block 2: 130,000 kg (290,000 lb)
Comparable
Launch history
StatusActive
Launch sites Kennedy, LC-39B
Total launches1
Success(es)1
First flight16 November 2022, 06:47:44  UTC [5] (1:47:44 am EST)
Type of passengers/cargo Orion

Notes

  1. The FY2021 spending plan indicates that this is for "Block 1B (non-add) (including EUS)"
  2. See the budget table for yearly inflation-adjusted figures.
Stage info
Then-planned launch date history
DatePlanned launch date
October 201031 December 2016 [109] [163] [164] [165]
September 20112017 [166] [167] [165]
February 2012–August 201417 December 2017 [165] [168]
December 2014June–July 2018 [169]
13 April 2017[ inconsistent ]November 2018 [170]
28 April 20172019 [171] [165]
November 2017June 2020 [172]
December 2019November 2020 [173] [174]
21 February 202018 April 2021 [174]
28 February 2020Mid- to late 2021 [175]
May 202022 November 2021 [176] [177]
August 2021December 2021 [178] [179]
22 October 202112 February 2022 [180] [181]
17 December 2021March–April 2022 [182]
February 2022May 2022 [183]
March 2022June 2022 [184]
26 April 202223 August 2022 [185] [186]
20 July 20228:33 am ET (12:33 UTC), 29 August 2022 [187]
29 August 202212:48 pm ET (16:48 UTC), 2 September 2022 [188] [189] [190]
30 August 20222:17 pm ET (18:17 UTC), 3 September 2022 [191] [192]
3 September 202219 September–4 October 2022 [193]
8 September 202223 September–4 October 2022 [194]
12 September 202227 September–4 October 2022 [195]
24 September 2022Late October 2022 [196] [197] [198]
30 September 202212–27 November 2022 [199]
13 October 202212:07 am ET (5:07 UTC), 14 November 2022 [200]
8 November 20221:04 am ET (6:04 UTC), 16 November 2022 [5]
  1. 1 2 Height measured to the top of the launch abort tower on the crewed variant of the rocket; the cargo variant is shorter. Height varies based on payload fairing. [1]
  2. 1 2 3 4 Payload mass is for the cargo variant of the rocket, capacity of the crewed variant is reduced.

Related Research Articles

<span class="mw-page-title-main">RS-25</span> Space Shuttle and SLS main engine

The RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is used on the Space Launch System (SLS).

<span class="mw-page-title-main">Michoud Assembly Facility</span> NASA rocket manufacturing complex in Michoud, New Orleans

The Michoud Assembly Facility (MAF) is an 832-acre (337-hectare) industrial complex for the manufacture and structural assembly of aerospace vehicles and components. It is owned by NASA and located in New Orleans East, a section of New Orleans, Louisiana, in the United States. Organizationally it is part of NASA's Marshall Space Flight Center, and is currently a multi-tenant complex to allow commercial and government contractors, as well as government agencies, to use the site.

<span class="mw-page-title-main">Atlas V</span> Expendable launch system

Atlas V is an expendable launch system and the fifth major version in the Atlas launch vehicle family. It was designed by Lockheed Martin and has been operated by United Launch Alliance (ULA) since 2006. It is used for DoD, NASA, and commercial payloads. It is America's longest-serving active rocket. After 87 launches, in August 2021 ULA announced that Atlas V would be retired, and all 29 remaining launches had been sold. As of July 2024, 15 launches remain. Production ceased in 2024. Other future ULA launches will use the Vulcan Centaur rocket.

<span class="mw-page-title-main">Shuttle-derived vehicle</span> Launch vehicle built from Space Shuttle components

Shuttle-derived vehicles (SDV) are space launch vehicles and spacecraft that use components, technology, and infrastructure originally developed for the Space Shuttle program.

<span class="mw-page-title-main">Mobile launcher platform</span> Structure used to support large rockets

A mobile launcher platform (MLP), also known as mobile launch platform, is a structure used to support a large multistage space vehicle which is assembled (stacked) vertically in an integration facility and then transported by a crawler-transporter (CT) to a launch pad. This becomes the support structure for launch.

<span class="mw-page-title-main">National Launch System</span> Proposed family of US super heavy-lift launch vehicles

The National Launch System was a study authorized in 1991 by President George H. W. Bush to outline alternatives to the Space Shuttle for access to Earth orbit. Shortly thereafter, NASA asked Lockheed Missiles and Space, McDonnell Douglas, and TRW to perform a ten-month study.

<span class="mw-page-title-main">Delta Cryogenic Second Stage</span> Japanese-American rocket stage

The Delta Cryogenic Second Stage (DCSS) is a family of cryogenic-fuelled rocket stages used on the Delta III, Delta IV, and on the Space Launch System Block 1 launch vehicles. The DCSS employs a unique two-tank architecture where the cylindrical liquid hydrogen (LH2) tank carries payload launch loads and forms the upper section. An oblate spheroid tank filled with liquid oxygen (LOX) and the engine are suspended from the LH2 tank and covered by the interstage during initial launch.

<span class="mw-page-title-main">Falcon Heavy</span> SpaceX heavy-lift launch vehicle

Falcon Heavy is a super heavy-lift launch vehicle with partial reusability that can carry cargo into Earth orbit and beyond. It is designed, manufactured and launched by American aerospace company SpaceX.

<span class="mw-page-title-main">Orion (spacecraft)</span> American–European spacecraft class for the Artemis program

Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of four beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Orion is intended to be launched atop a Space Launch System (SLS) rocket, with a tower launch escape system.

<span class="mw-page-title-main">Artemis I</span> 2022 uncrewed Moon-orbiting NASA mission

Artemis I, formerly Exploration Mission-1 (EM-1), was an uncrewed Moon-orbiting mission that was launched in November 2022. As the first major spaceflight of NASA's Artemis program, Artemis I marked the agency's return to lunar exploration after the conclusion of the Apollo program five decades earlier. It was the first integrated flight test of the Orion spacecraft and Space Launch System (SLS) rocket, and its main objective was to test the Orion spacecraft, especially its heat shield, in preparation for subsequent Artemis missions. These missions seek to reestablish a human presence on the Moon and demonstrate technologies and business approaches needed for future scientific studies, including exploration of Mars.

<span class="mw-page-title-main">Artemis II</span> Artemis programs second lunar flight

Artemis II is a scheduled mission of the NASA-led Artemis program. It will use the second launch of the Space Launch System (SLS) rocket and include the first crewed mission of the Orion spacecraft. The mission is scheduled to take place no earlier than April 2026. Four astronauts will perform a flyby of the Moon and return to Earth, becoming the first crew to travel beyond low Earth orbit since Apollo 17 in 1972. Artemis II will be the first crewed launch from Launch Complex 39B of the Kennedy Space Center since STS-116 in 2006.

<span class="mw-page-title-main">Exploration Upper Stage</span> Rocket stage in NASAs Space Launch System

The Exploration Upper Stage (EUS) is a rocket stage under development that will be used for future flights of NASA's Space Launch System (SLS). Used on SLS Block 1B and Block 2, it will replace the SLS Block 1's Interim Cryogenic Propulsion Stage. The stage will be powered by four RL10C-3 engines burning liquid oxygen and liquid hydrogen to produce a total thrust of 433.1 kN (97,360 lbf). The EUS is expected to first fly on Artemis IV in 2028.

<span class="mw-page-title-main">Vulcan Centaur</span> United Launch Alliance launch vehicle

Vulcan Centaur is a heavy-lift launch vehicle created and operated by United Launch Alliance (ULA). It is a two-stage-to-orbit launch vehicle consisting of the Vulcan first stage and the Centaur second stage. It replaces ULA's Atlas V and Delta IV rockets. It is principally designed for the National Security Space Launch (NSSL) program, which launches satellites for U.S. intelligence agencies and the Defense Department, but ULA believes it will also be able to price missions low enough to attract commercial launches.

Super heavy-lift launch vehicle Launch vehicle capable of lifting more than 50 tonnes of payload into low earth orbit

A super heavy-lift launch vehicle is a rocket that can lift to low Earth orbit a "super heavy payload", which is defined as more than 50 metric tons (110,000 lb) by the United States and as more than 100 metric tons (220,000 lb) by Russia. It is the most capable launch vehicle classification by mass to orbit, exceeding that of the heavy-lift launch vehicle classification.

<span class="mw-page-title-main">Exploration Ground Systems</span> NASA program for launch vehicle support

NASA's Exploration Ground Systems (EGS) Program is one of three programs based at NASA's Kennedy Space Center in Florida. EGS was established to develop and operate the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport and launch. EGS is preparing the infrastructure to support NASA's Space Launch System (SLS) rocket and its payloads, such as the Orion spacecraft for Artemis I. Artemis I is the first to launch in a series of increasingly complex missions that will enable human exploration to the Moon and Mars.

<span class="mw-page-title-main">Artemis program</span> NASA-led lunar exploration program

The Artemis program is a Moon exploration program led by the United States' National Aeronautics and Space Administration (NASA), formally established in 2017 via Space Policy Directive 1. It is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 mission in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.

<span class="mw-page-title-main">Space Launch System core stage</span> Main stage of the NASA Space Launch System rocket

The Space Launch System core stage, or simply core stage, is the main stage of the American Space Launch System (SLS) rocket, built by The Boeing Company in the NASA Michoud Assembly Facility. At 65 m (212 ft) tall and 8.4 m (27.6 ft) in diameter, the core stage contains approximately 987 t (2,177,000 lb) of its liquid hydrogen and liquid oxygen cryogenic propellants. Propelled by 4 RS-25 engines, the stage generates approximately 7.44 MN (1,670,000 lbf) of thrust, about 25% of the Space Launch System's thrust at liftoff, for approximately 500 seconds, propelling the stage alone for the last 375 seconds of flight. The stage lifts the rocket to an altitude of approximately 162 km (531,380 ft) before separating, reentering the atmosphere over the Pacific Ocean.

References

PD-icon.svg This article incorporates text from this source, which is in the public domain .

  1. 1 2 3 4 "SLS Lift Capabilities and Configurations" (PDF). NASA. 29 April 2020. Archived (PDF) from the original on 21 September 2020. Retrieved 20 January 2021.
  2. NASA (27 October 2021). "Space Launch System Core Stage". nasa.gov. Archived from the original on 15 June 2020. Retrieved 19 November 2022.
  3. "SLS October 2015 Fact Sheet" (PDF). Archived (PDF) from the original on 6 September 2014. Retrieved 19 November 2022.
  4. "2018 draft factsheet of SLS capabilities" (PDF). NASA. 20 August 2018. Archived (PDF) from the original on 30 June 2019. Retrieved 24 August 2022.
  5. 1 2 "NASA Prepares Rocket, Spacecraft Ahead of Tropical Storm Nicole, Re-targets Launch". NASA . 8 November 2022. Archived from the original on 8 November 2022. Retrieved 8 November 2022.
  6. 1 2 "Space Launch System Solid Rocket Booster". NASA. February 2021. Archived from the original on 3 July 2022. Retrieved 16 August 2022.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  7. Redden, Jeremy J. (27 July 2015). "SLS Booster Development". NASA Technical Reports Server. Archived from the original on 23 August 2021. Retrieved 1 October 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  8. @NASAGroundSys (2 October 2024). "The results are in… *drumroll* 🥁
    Core stage weighs a total of 215,910 pounds! When full of propellant, core stage will weigh over 2 million pounds.
    Using the Vehicle Assembly Building high bay crane and a secondary crane, Exploration Ground Systems teams lifted the @NASA_SLS core stage for @NASAArtemis II approximately 6 inches from its current mounts. Teams repeated the lift, weighing the core stage twice to ensure an exact weight reading was achieved"
    (Tweet). Retrieved 3 October 2024 via Twitter.
  9. "SLS Core Stage Fact Sheet" (PDF). NASA. Archived (PDF) from the original on 20 February 2021. Retrieved 4 October 2021.
  10. "RS-25 Engine". Archived from the original on 12 August 2021. Retrieved 12 June 2021.
  11. "What is ICPS?". United Launch Alliance. 23 June 2021. Archived from the original on 23 June 2021. Retrieved 4 October 2021.
  12. "Delta IV Launch Services User's Guide" (PDF). United Launch Alliance. Archived (PDF) from the original on 21 September 2018. Retrieved 13 April 2024.
  13. 1 2 3 "Space Launch System". Spaceflight Insider. 9 September 2018. Archived from the original on 5 October 2021. Retrieved 4 October 2021.
  14. "1 year down, a galaxy to go". Boeing. Archived from the original on 21 April 2024. Retrieved 13 April 2024.
  15. "RL10 Engine". Aerojet Rocketdyne. Archived from the original on 7 November 2021. Retrieved 18 November 2021.
  16. 1 2 3 4 5 Chris Bergin (4 October 2011). "SLS trades lean towards opening with four RS-25s on the core stage". NASASpaceflight.com. Archived from the original on 16 July 2019. Retrieved 26 January 2012.
  17. Chris Bergin (25 April 2011). "SLS planning focuses on dual phase approach opening with SD HLV". NASASpaceFlight.com. Archived from the original on 29 June 2019. Retrieved 26 January 2012.
  18. Bergin, Chris (16 June 2011). "Managers SLS announcement after SD HLV victory". NASASpaceFlight.com. Archived from the original on 29 January 2012. Retrieved 26 January 2012.
  19. 1 2 Bergin, Chris (23 February 2012). "Acronyms to Ascent – SLS managers create development milestone roadmap". NASASpaceFlight.com. Archived from the original on 30 April 2012. Retrieved 9 April 2012.
  20. Harbaugh, Jennifer (9 December 2019). "NASA, Public Marks Assembly of SLS Stage with Artemis Day". nasa.gov. NASA. Archived from the original on 6 February 2020. Retrieved 10 December 2019. NASA and the Michoud team will shortly send the first fully assembled, 212-foot-tall core stage [...] 27.6-feet-in-diameter tanks and barrels.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  21. 1 2 "space launch system" (PDF). nasa.gov. 2012. Archived from the original (PDF) on 13 August 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  22. Stephen Clark (31 March 2011). "NASA to set exploration architecture this summer". Spaceflight Now. Archived from the original on 15 May 2011. Retrieved 26 May 2011.
  23. Chris Bergin (14 September 2011). "SLS finally announced by NASA – Forward path taking shape". NASASpaceFlight.com. Archived from the original on 2 September 2019. Retrieved 26 January 2012.
  24. 1 2 Payne, Martin (18 February 2013). "SLS takes on new buckling standards, drops Super Light alloy". NASASpaceFlight.com. Archived from the original on 26 June 2023. Retrieved 26 June 2023.
  25. 1 2 Burkey, Martin (2 June 2016). "A (much) Closer Look at How We Build SLS – Rocketology: NASA's Space Launch System". NASA Blogs. Retrieved 26 June 2023.
  26. 1 2 "SLS Engine Section Barrel Hot off the Vertical Weld Center at Michoud". NASA. Archived from the original on 19 November 2014. Retrieved 16 November 2014.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  27. 1 2 Evans, Ben (2 May 2020). "NASA Orders 18 More RS-25 Engines for SLS Moon Rocket, at $1.79 Billion". AmericaSpace. Archived from the original on 31 August 2021. Retrieved 13 October 2021.
  28. Sloss, Philip (2 January 2015). "NASA ready to power up the RS-25 engines for SLS". NASASpaceFlight.com. Archived from the original on 15 May 2019. Retrieved 10 March 2015.
  29. Boen, Brooke (2 March 2015). "RS-25: The Clark Kent of Engines for the Space Launch System". NASA. Archived from the original on 24 December 2020. Retrieved 29 March 2021.
  30. Harbaugh, Jennifer (29 January 2020). "Space Launch System RS-25 Core Stage Engines". NASA. Archived from the original on 18 March 2021. Retrieved 29 August 2021.
  31. 1 2 Campbell, Lloyd (25 March 2017). "NASA conducts 13th test of Space Launch System RS-25 engine". SpaceflightInsider.com. Archived from the original on 26 April 2019. Retrieved 29 April 2017.
  32. 1 2 3 "NASA Awards Aerojet Rocketdyne $1.79 Billion Contract Modification to Build Additional RS-25 Rocket Engines to Support Artemis Program | Aerojet Rocketdyne". www.rocket.com. Archived from the original on 23 March 2021. Retrieved 29 March 2021.
  33. Sloss, Philip (31 December 2020). "NASA, Aerojet Rocketdyne plan busy RS-25 test schedule for 2021". NASASpaceFlight. Archived from the original on 9 April 2021. Retrieved 13 October 2021.
  34. Ballard, Richard (2017). "Next-Generation RS-25 Engines for the NASA Space Launch System" (PDF). NASA Marshall Space Flight Center. p. 3. Archived (PDF) from the original on 13 October 2021. Retrieved 13 October 2021.
  35. "Four to Five: Engineer Details Changes Made to SLS Booster". Spaceflight Insider. 10 January 2016. Archived from the original on 25 July 2020. Retrieved 9 June 2020.
  36. Perry, Beverly (21 April 2016). "We've Got (Rocket) Chemistry, Part 2". Rocketology: NASA’s Space Launch System. National Aeronautics and Space Administration. Retrieved 30 September 2022.
  37. Priskos, Alex (7 May 2012). "Five-segment Solid Rocket Motor Development Status" (PDF). ntrs.nasa.gov. NASA. Archived (PDF) from the original on 24 December 2018. Retrieved 11 March 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  38. "Space Launch System: How to launch NASA's new monster rocket". NASASpaceFlight.com. 20 February 2012. Archived from the original on 16 November 2019. Retrieved 9 April 2012.
  39. 1 2 Bergin, Chris (8 May 2018). "SLS requires Advanced Boosters by flight nine due to lack of Shuttle heritage components". NASASpaceFlight.com. Archived from the original on 1 June 2019. Retrieved 15 November 2019.
  40. 1 2 Sloss, Philip (12 July 2021). "NASA, Northrop Grumman designing new BOLE SRB for SLS Block 2 vehicle". NASASpaceFlight. Archived from the original on 13 August 2021. Retrieved 13 August 2021.
  41. Tobias, Mark E.; Griffin, David R.; McMillin, Joshua E.; Haws, Terry D.; Fuller, Micheal E. (2 March 2019). "Booster Obsolescence and Life Extension (BOLE) for Space Launch System (SLS)" (PDF). NASA Technical Reports Server. NASA. Archived (PDF) from the original on 15 November 2019. Retrieved 15 November 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  42. Tobias, Mark E.; Griffin, David R.; McMillin, Joshua E.; Haws, Terry D.; Fuller, Micheal E. (27 April 2020). "Booster Obsolescence and Life Extension (BOLE) for Space Launch System (SLS)" (PDF). NASA Technical Reports Server. NASA. Archived (PDF) from the original on 27 January 2021. Retrieved 12 August 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  43. 1 2 "NASA'S SPACE LAUNCH SYSTEM BEGINS MOVING TO THE LAUNCH SITE" (PDF). NASA. 15 April 2020. Archived (PDF) from the original on 13 October 2021. Retrieved 12 October 2021.
  44. Rosenberg, Zach. "Delta second stage chosen as SLS interim" Archived 27 July 2012 at the Wayback Machine . Flight International, 8 May 2012.
  45. 1 2 Henry, Kim (30 October 2014). "Getting to Know You, Rocket Edition: Interim Cryogenic Propulsion Stage". nasa.gov. Archived from the original on 6 August 2020. Retrieved 25 July 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  46. 1 2 3 Harbaugh, Jennifer (9 July 2018). "The Great Escape: SLS Provides Power for Missions to the Moon". NASA. Archived from the original on 11 December 2019. Retrieved 4 September 2018.
  47. Batcha, Amelia L.; Williams, Jacob; Dawn, Timothy F.; Gutkowski, Jeffrey P.; Widner, Maxon V.; Smallwood, Sarah L.; Killeen, Brian J.; Williams, Elizabeth C.; Harpold, Robert E. (27 July 2020). "Artemis I Trajectory Design and Optimization" (PDF). NASA Technical Reports Server. NASA. Archived (PDF) from the original on 9 September 2021. Retrieved 8 September 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  48. "Space Launch System Data Sheet". SpaceLaunchReport.com. 27 May 2014. Archived from the original on 21 October 2014. Retrieved 25 July 2014.{{cite web}}: CS1 maint: unfit URL (link)
  49. "Upper Stage RL10s arrive at Stennis for upcoming SLS launches February 2020". NASASpaceFlight.com. 3 February 2020. Archived from the original on 15 February 2020. Retrieved 15 February 2020.
  50. "Teledyne to Build NASA's $60 Million Launch Vehicle Stage Adapter". Archived from the original on 1 April 2023. Retrieved 1 April 2023.
  51. "Teledyne Brown Engineering Awarded $85 Million NASA Contract to Provide Key Stage of NASA's Space Launch System Vehicle Returning Astronauts to the Moon". www.teledyne.com. Archived from the original on 1 April 2023. Retrieved 31 May 2023.
  52. 1 2 "SLS prepares for PDR – Evolution eyes Dual-Use Upper Stage". NASASpaceFlight.com. June 2013. Archived from the original on 14 September 2013. Retrieved 12 March 2015.
  53. "NASA confirms EUS for SLS Block 1B design and EM-2 flight". NASASpaceFlight.com. 6 June 2014. Archived from the original on 16 July 2014. Retrieved 24 July 2014.
  54. Sloss, Philip (4 March 2021). "NASA, Boeing looking to begin SLS Exploration Upper Stage manufacturing in 2021". Nasaspaceflight. Archived from the original on 24 June 2021. Retrieved 23 June 2021.
  55. Gebhardt, Chris (5 March 2022). "With all-composite cryogenic tank, Boeing eyes mass-reducing space, aviation applications". Archived from the original on 7 March 2022. Retrieved 18 March 2022.
  56. Bergin, Chris (28 March 2014). "SLS positioning for ARRM and Europa missions". NASASpaceflight.com. Archived from the original on 3 December 2021. Retrieved 8 November 2014.
  57. "Space Launch System Lift Capabilities" (PDF). NASA . 29 April 2020. Archived from the original (PDF) on 21 September 2021. Retrieved 29 August 2024.
  58. 1 2 3 "Space Launch System" (PDF). NASA Facts. NASA. 11 October 2017. FS-2017-09-92-MSFC. Archived (PDF) from the original on 24 December 2018. Retrieved 4 September 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  59. Smith, Marcia (14 September 2011). "New NASA Crew Transportation System to Cost US$18 Billion Through 2017". Space Policy Online. Archived from the original on 2 April 2015. Retrieved 15 September 2011.
  60. Bill Nelson, Kay Bailey Hutchison, Charles F. Bolden (14 September 2011). Future of NASA Space Program. Washington, D.C.: Cspan.org. Archived from the original on 2 April 2015. Retrieved 25 March 2015.
  61. Booz Allen Hamilton (19 August 2011). "Independent Cost Assessment of the Space Launch System, Multi-purpose Crew Vehicle and 21st Century Ground Systems Programs: Executive Summary of Final Report" (PDF). nasa.gov. Archived (PDF) from the original on 2 March 2012. Retrieved 3 March 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  62. Paszior, Andy (7 September 2011). "White House Experiences Sticker Shock Over NASA's Plans". The Wall Street Journal. Archived from the original on 9 December 2017. Retrieved 22 February 2015.
  63. "ESD Integration, Budget Availability Scenarios" (PDF). Space Policy Online. 19 August 2011. Archived (PDF) from the original on 9 December 2011. Retrieved 15 September 2011.
  64. Smith, Marcia (9 September 2011). "The NASA Numbers Behind That WSJ Article". Space Policy Online. Archived from the original on 4 January 2013. Retrieved 15 September 2011.
  65. "HEFT Phase I Closeout" (PDF). nasawatch.com. September 2010. p. 69. Archived (PDF) from the original on 30 September 2021. Retrieved 25 March 2012.
  66. "NASA's huge new rocket may cost US$500 million per launch". NBC News. 12 September 2012. Archived from the original on 12 August 2020. Retrieved 13 November 2019.
  67. Roop, Lee (29 July 2013). "NASA defends Space Launch System against charge it 'is draining the lifeblood' of space program". al.com. Archived from the original on 18 February 2015. Retrieved 18 February 2015.
  68. Strickland, John (15 July 2013). "Revisiting SLS/Orion launch costs". The Space Review. Archived from the original on 18 February 2015. Retrieved 18 February 2015.
  69. "NASA Signs Agreement for a European-Provided Orion Service Module". NASA. 12 April 2015 [2013]. Archived from the original on 18 January 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  70. 1 2 Foust, Jeff (27 August 2014). "SLS Debut Likely To Slip to 2018". SpaceNews. Archived from the original on 30 September 2021. Retrieved 12 March 2015.
  71. Davis, Jason. "NASA Budget Lists Timelines, Costs and Risks for First SLS Flight". The Planetary Society. Archived from the original on 12 March 2015. Retrieved 11 March 2015.
  72. "NASA's Management of the Space Launch System Stages Contract" (PDF). oig.nasa.gov. NASA Office of Inspector General Office of Audits. 10 October 2018. Archived (PDF) from the original on 10 October 2018. Retrieved 14 October 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  73. "NASA FY 2019 Budget Estimates" (PDF). nasa.gov. p. BUD-2. Archived (PDF) from the original on 24 December 2018. Retrieved 16 December 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  74. Smith, Rich (26 March 2019). "Is NASA Preparing to Cancel Its Space Launch System?". The Motley Fool. Archived from the original on 23 June 2019. Retrieved 15 May 2019.
  75. "NASA FY 2019 Budget Overview" (PDF). Archived (PDF) from the original on 4 December 2019. Retrieved 24 June 2019. Quote: "Supports launch of the Power and Propulsion Element on a commercial launch vehicle as the first component of the LOP–Gateway, (page 14) PD-icon.svg This article incorporates text from this source, which is in the public domain .
  76. "NASA Commits to Future Artemis Missions with More SLS Rocket Engines" (Press release). NASA. 1 May 2020. Archived from the original on 1 May 2020. Retrieved 4 May 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  77. 1 2 3 NASA FY22 Inflation Tables – to be utilized in FY23 Archived 31 October 2022 at the Wayback Machine ” (Excel). NASA. Retrieved 31 October 2022. This article incorporates text from this source, which is in the public domain .
  78. "FY 2013 Complete Budget Estimates" (PDF). NASA. Archived (PDF) from the original on 6 September 2021. Retrieved 3 October 2021.
  79. "FY 2014 Complete Budget Estimates" (PDF). NASA. Archived (PDF) from the original on 6 September 2021. Retrieved 3 October 2021.
  80. "FY 2013 Operating Plan" (PDF). NASA. Archived (PDF) from the original on 19 January 2021. Retrieved 3 October 2021.
  81. "FY 2014 Operating Plan" (PDF). NASA. Archived (PDF) from the original on 11 June 2017. Retrieved 3 October 2021.
  82. "FY 2015 Operating Plan Update (Aug. 2015)" (PDF). NASA. Archived (PDF) from the original on 17 February 2017. Retrieved 3 October 2021.
  83. "FY 2016 Operating Plan (Sept. 4 update)" (PDF). NASA. Archived (PDF) from the original on 4 October 2021. Retrieved 3 October 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  84. 1 2 "FY 2017 Operating Plan" (PDF). NASA. Archived (PDF) from the original on 4 October 2021. Retrieved 3 October 2021.
  85. 1 2 "FY 2018 Operating Plan" (PDF). NASA. Archived (PDF) from the original on 12 July 2021. Retrieved 3 October 2021.
  86. FY 2021 President's Budget Request Summary” (PDF). NASA. Retrieved 31 October 2022. Archived (PDF) from the original on 31 October 2022. This article incorporates text from this source, which is in the public domain .
  87. 1 2 "Updated FY 2020 Spending Plan" (PDF). NASA. Archived (PDF) from the original on 1 November 2020. Retrieved 3 October 2021.
  88. “FY 2023 President's Budget Request Summary” (PDF). NASA. Retrieved 6 June 2024. Archived Archived 6 June 2024 at the Wayback Machine (PDF) from the original on 6 June 2024. This article incorporates text from this source, which is in the public domain . Archived 6 June 2024 at the Wayback Machine
  89. “FY 2024 President's Budget Request Summary” (PDF). NASA. Retrieved 6 June 2024. Archived (PDF) Archived 6 June 2024 at the Wayback Machine from the original on 6 June 2024. This article incorporates text from this source, which is in the public domain . Archived 16 July 2024 at the Wayback Machine
  90. Consolidated Appropriations Act, 2023 Archived 19 June 2024 at the Wayback Machine
  91. "NASA's FY 2024 Budget". The Planetary Society. Archived from the original on 26 June 2024. Retrieved 7 June 2024.
  92. Foust, Jeff (9 January 2024). "NASA delays Artemis 2 and 3 missions". SpaceNews. Retrieved 7 June 2024.
  93. "Definitive Contract NNM12AA82C". govtribe.com. Archived from the original on 30 September 2021. Retrieved 16 December 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  94. "NASA FY2021 budget estimates" (PDF). NASA. Archived (PDF) from the original on 27 July 2020. Retrieved 14 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  95. "NASA's Ground Systems Development and Operations Program Completes Preliminary Design Review". NASA. 27 March 2014. Archived from the original on 30 September 2021. Retrieved 23 June 2016.
  96. 1 2 "NASA'S MANAGEMENT OF THE ARTEMIS MISSIONS" (PDF). Office of Inspector General (United States). NASA. 15 November 2021. p. numbered page 23, PDF page 29. Archived (PDF) from the original on 15 November 2021. Retrieved 15 November 2021. SLS/Orion Production and Operating Costs Will Average Over $4 Billion Per Launch [...] We project the cost to fly a single SLS/Orion system through at least Artemis IV to be $4.1 billion per launch at a cadence of approximately one mission per year. Building and launching one Orion capsule costs approximately $1 billion, with an additional $300 million for the Service Module supplied by the ESA [...] In addition, we estimate the single-use SLS will cost $2.2 billion to produce, including two rocket stages, two solid rocket boosters, four RS-25 engines, and two stage adapters. Ground systems located at Kennedy where the launches will take place—the Vehicle Assembly Building, Crawler-Transporter, Mobile Launcher 1, Launch Pad, and Launch Control Center—are estimated to cost $568 million per year due to the large support structure that must be maintained. The $4.1 billion total cost represents production of the rocket and the operations needed to launch the SLS/Orion system including materials, labor, facilities, and overhead, but does not include any money spent either on prior development of the system or for next-generation technologies such as the SLS's Exploration Upper Stage, Orion's docking system, or Mobile Launcher 2. [...] The cost per launch was calculated as follows: $1 billion for the Orion based on information provided by ESD officials and NASA OIG analysis; $300 million for the ESA's Service Module based on the value of a barter agreement between ESA and the United States in which ESA provides the service modules in exchange for offsetting its ISS responsibilities; $2.2 billion for the SLS based on program budget submissions and analysis of contracts; and $568 million for EGS costs related to the SLS/Orion launch as provided by ESD officials.
  97. 1 2 "Fiscal Year 2010 Budget Estimates" (PDF). NASA. p. v. Archived (PDF) from the original on 6 August 2016. Retrieved 23 June 2016.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  98. "FY 2008 Budget Estimates" (PDF). NASA. p. ESMD-14. Archived (PDF) from the original on 3 June 2016. Retrieved 23 June 2016.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  99. 1 2 3 4 5 6 7 Bergin, Chris (20 February 2015). "Advanced Boosters progress towards a solid future for SLS". NasaSpaceFlight.com. Archived from the original on 23 February 2015. Retrieved 25 February 2015.
  100. Consolidated Appropriations Act, 2016’" (PDF). p.63. Archived from the original 31 October 2022. Retrieved 31 October 2022. This article incorporates text from this source, which is in the public domain .
  101. "NASA outlines plan for 2024 lunar landing". SpaceNews. 1 May 2019. Archived from the original on 30 September 2021. Retrieved 15 May 2019.
  102. Berger, Eric (20 May 2019). "NASA's full Artemis plan revealed: 37 launches and a lunar outpost". Ars Technica. Archived from the original on 23 May 2019. Retrieved 20 May 2019.
  103. Sloss, Philip (18 December 2019). "Amid competing priorities, Boeing redesigns NASA SLS Exploration Upper Stage". NASASpaceFlight.com. Archived from the original on 7 August 2020. Retrieved 25 July 2020.
  104. "FY 2019 Spend Plan" (PDF). NASA. Archived (PDF) from the original on 11 November 2020. Retrieved 3 October 2021.
  105. National Aeronautics and Space Administration FY 2021 Spending Plan” (PDF) June Update. NASA. Retrieved 3 January 2023. Archived from the original 3 January 2023. This article incorporates text from this source, which is in the public domain .
  106. National Aeronautics and Space Administration FY 2022 Spending Plan" (PDF). NASA. Retrieved 3 January 2023. Archived from the original on 3 January 2023. This article incorporates text from this source, which is in the public domain .
  107. "H.R.2617 - Consolidated Appropriations Act, 2023". Planetary Society. Archived from the original on 24 March 2023. Retrieved 28 July 2023.
  108. 1 2 3 "Public Law 111–267 111th Congress, 42 USC 18322. SEC. 302 (c) (2) 42 USC 18323. SEC. 303 (a) (2)" (PDF). 11 October 2010. pp. 11–12. Archived (PDF) from the original on 12 November 2020. Retrieved 14 September 2020. 42 USC 18322. SEC. 302 SPACE LAUNCH SYSTEM AS FOLLOW-ON LAUNCH VEHICLE TO THE SPACE SHUTTLE [...] (c) MINIMUM CAPABILITY REQUIREMENTS (1) IN GENERAL – The Space Launch System developed pursuant to subsection (b) shall be designed to have, at a minimum, the following: (A) The initial capability of the core elements, without an upper stage, of lifting payloads weighing between 70 tons and 100 tons into low-Earth orbit in preparation for transit for missions beyond low Earth orbit [...] (2) FLEXIBILITY [...] (Deadline) Developmental work and testing of the core elements and the upper stage should proceed in parallel subject to appro-priations. Priority should be placed on the core elements with the goal for operational capability for the core elements not later than December 31, 2016 [...] 42 USC 18323. SEC. 303 MULTI-PURPOSE CREW VEHICLE (a) INITIATION OF DEVELOPMENT (1) IN GENERAL – The Administrator shall continue the development of a multi-purpose crew vehicle to be available as soon as practicable, and no later than for use with the Space Launch System [...] (2) GOAL FOR OPERATIONAL CAPABILITY. It shall be the goal to achieve full operational capability for the transportation vehicle developed pursuant to this subsection by not later than December 31, 2016. For purposes of meeting such goal, the Administrator may undertake a test of the transportation vehicle at the ISS before that date.
  109. 1 2 "NASA Announces Design For New Deep Space Exploration System". NASA. 14 September 2011. Archived from the original on 21 September 2011. Retrieved 14 September 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  110. "NASA Announces Key Decision For Next Deep Space Transportation System". NASA. 24 May 2011. Archived from the original on 15 September 2016. Retrieved 26 January 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  111. "Press Conference on the Future of NASA Space Program". C-Span. 14 September 2011. Archived from the original on 8 February 2012. Retrieved 14 September 2011.
  112. Chang, Kenneth (14 September 2011). "NASA Unveils New Rocket Design". The New York Times. Archived from the original on 21 February 2017. Retrieved 14 September 2011.
  113. Cowing, Keith (14 September 2011). "NASA's New Space Launch System Announced – Destination TBD". SpaceRef. Archived from the original on 4 June 2012. Retrieved 26 January 2012.
  114. Morring, Frank (17 June 2011). "NASA Will Compete Space Launch System Boosters". Aviation Week. Archived from the original on 11 October 2011. Retrieved 20 June 2011.
  115. "SLS Block II drives hydrocarbon engine research". thespacereview.com. 14 January 2013. Archived from the original on 2 September 2013. Retrieved 13 September 2013.
  116. "NASA's Space Launch System: Partnering For Tomorrow" (PDF). NASA. Archived (PDF) from the original on 2 April 2015. Retrieved 12 March 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  117. "The Dark Knights – ATK's Advanced Boosters for SLS revealed". NASASpaceFlight.com. 14 January 2013. Archived from the original on 12 September 2013. Retrieved 10 September 2013.
  118. Hutchinson, Lee (15 April 2013). "New F-1B rocket engine upgrades Apollo-era design with 1.8M lbs of thrust". Ars Technica. Archived from the original on 2 December 2017. Retrieved 15 April 2013.
  119. "Second SLS Mission Might Not Carry Crew". SpaceNews. 21 May 2014. Archived from the original on 27 July 2014. Retrieved 25 July 2014.
  120. "Wind Tunnel testing conducted on SLS configurations, including Block 1B". NASASpaceFlight.com. July 2012. Archived from the original on 24 October 2012. Retrieved 13 November 2012.
  121. "NASA's Space Launch System Program PDR: Answers to the Acronym". NASA. 1 August 2013. Archived from the original on 4 August 2013. Retrieved 3 August 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  122. "NASA Completes Key Review of World's Most Powerful Rocket in Support". NASA. 15 April 2015. Archived from the original on 27 May 2016. Retrieved 26 October 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  123. Gebhardt, Chris (13 November 2013). "SLS upper stage proposals reveal increasing payload-to-destination options". NASASpaceFlight.com. Archived from the original on 18 November 2013. Retrieved 18 November 2013.
  124. Todd, David (3 June 2013). "SLS design may ditch J-2X upper stage engine for four RL-10 engines". Seradata. Archived from the original on 4 March 2016.
  125. Todd, David (7 November 2014). "Next Steps for SLS: Europe's Vinci is a contender for Exploration Upper-Stage Engine". Seradata. Archived from the original on 4 March 2016.
  126. Berger, Eric (5 November 2019). "NASA rejects Blue Origin's offer of a cheaper upper stage for the SLS rocket". Ars Technica. Archived from the original on 19 December 2019. Retrieved 19 December 2019.
  127. "Redacted_EUS.pdf". sam.gov. 31 October 2019. Archived (PDF) from the original on 6 October 2021. Retrieved 6 October 2021.
  128. "NASA and ATK Successfully Test Ares First Stage Motor". NASA. 10 September 2009. Archived from the original on 24 December 2018. Retrieved 30 January 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  129. "NASA and ATK Successfully Test Five-Segment Solid Rocket Motor". NASA. 31 August 2010. Archived from the original on 19 December 2011. Retrieved 30 January 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  130. "NASA Successfully Tests Five-Segment Solid Rocket Motor". NASA. 31 August 2010. Archived from the original on 24 September 2011. Retrieved 8 September 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  131. Bergin, Chris (10 March 2015). "QM-1 shakes Utah with two minutes of thunder". NASASpaceFlight.com. Archived from the original on 13 March 2015. Retrieved 10 March 2015.
  132. "Orbital ATK Successfully Tests the World's Largest Solid Rocket Motor". Northrop Grumman. 28 June 2016. Archived from the original on 15 June 2021. Retrieved 11 October 2021.
  133. Berger, Eric (20 October 2017). "NASA chooses not to tell Congress how much deep space missions cost". arstechnica.com. Archived from the original on 17 December 2018. Retrieved 16 December 2018.
  134. Vought, Russell T. "Letter to the Chair and Vice Chair of the Senate Appropriations Committee with respect to 10 of the FY 2020 annual appropriations bills" (PDF). whitehouse.gov. p. 7. Archived (PDF) from the original on 13 November 2019. Retrieved 13 November 2019. estimated cost of over US$2 billion per launch for the SLS once development is complete
  135. 1 2 Berger, Eric (8 November 2019). "NASA does not deny the "over US$2 billion" cost of a single SLS launch". Ars Technica. Condé Nest. Archived from the original on 11 November 2019. Retrieved 13 November 2019. The White House number appears to include both the "marginal" cost of building a single SLS rocket as well as the "fixed" costs of maintaining a standing army of thousands of employees and hundreds of suppliers across the country. Building a second SLS rocket each year would make the per-unit cost "significantly less"
  136. 1 2 "NASA’s Transition of the Space Launch System to a Commercial Services Contract Archived 25 July 2024 at the Wayback Machine " oig.nasa.gov. 12 October 2023. Retrieved 7 June 2024.
  137. 1 2 3 4 Roulette, Joey (8 June 2023). "Analysis: Boeing, Northrop face obstacles in commercializing flagship US rocket". Reuters. Retrieved 8 June 2023.
  138. "The NASA Authorization Act of 2010". Featured Legislation. U.S. Senate. 15 July 2010. Archived from the original on 10 April 2011. Retrieved 26 May 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  139. Tate, Karl (16 September 2011). "Space Launch System: NASA's Giant Rocket Explained". Space.com. Archived from the original on 27 January 2012. Retrieved 26 January 2012.
  140. "SLS Upper Stage set to take up residence in the former home of ISS modules July 2017". 11 July 2017. Archived from the original on 7 August 2020. Retrieved 15 February 2020.
  141. Harbaugh, Jennifer (8 November 2018). "Meet the Interim Cryogenic Propulsion Stage for SLS". NASA. Archived from the original on 7 August 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  142. "NASA's Space Launch System Core Stage Passes Major Milestone, Ready to Start Construction". Space Travel. 27 December 2012. Archived from the original on 21 December 2019. Retrieved 27 December 2012.
  143. "All Four Engines Are Attached to the SLS Core Stage for Artemis I Mission". NASA. 8 November 2019. Archived from the original on 12 November 2019. Retrieved 12 November 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  144. Clark, Stephen (15 December 2019). "NASA declares first SLS core stage complete". Spaceflight Now. Archived from the original on 11 May 2022. Retrieved 7 October 2021.
  145. Rincon, Paul (9 January 2020). "Nasa Moon rocket core leaves for testing". BBC News. Archived from the original on 9 January 2020. Retrieved 9 January 2020.
  146. "Boeing, NASA getting ready for SLS Core Stage Green Run campaign ahead of Stennis arrival". NASASpaceFlight.com. 14 December 2019. Archived from the original on 30 September 2021. Retrieved 9 January 2020.
  147. "NASA Will Have 8 Minute Hold Down Test in 2020". Next Big Future. Archived from the original on 2 August 2019. Retrieved 2 August 2019.
  148. Foust, Jeff (16 January 2021). "Green Run hotfire test ends early". SpaceNews. Archived from the original on 3 October 2021. Retrieved 17 January 2021.
  149. Rincon, Paul (20 January 2021). "SLS: NASA finds cause of 'megarocket' test shutdown". BBC News. Archived from the original on 20 January 2021. Retrieved 20 January 2021.
  150. Dunbar, Brian (29 April 2021). "Space Launch System Core Stage Arrives at the Kennedy Space Center". NASA. Archived from the original on 7 May 2021. Retrieved 1 June 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  151. Sloss, Philip (20 May 2021). "SLS Core Stage thermal protection system refurbishment in work at Kennedy for Artemis 1". NASASpaceFlight.com. Archived from the original on 26 May 2021. Retrieved 26 May 2021.
  152. 1 2 Sloss, Philip (29 September 2021). "EGS, Jacobs completing first round of Artemis 1 pre-launch integrated tests prior to Orion stacking". NASASpaceFlight . Archived from the original on 29 September 2021. Retrieved 29 September 2021.
  153. "Former NASA Official: Moon launch this month may be "embarrassing"". The Byte. 25 August 2022. Archived from the original on 16 September 2022. Retrieved 15 September 2022.
  154. 1 2 3 4 5 6 Sloss, Philip (19 July 2021). "Boeing working on multiple Cores, first EUS hardware for Artemis missions 2–4". NASASpaceFlight.com. Archived from the original on 12 August 2021. Retrieved 11 October 2021.
  155. "Shields up! Spray foam evolving to protect NASA SLS". Boeing. 14 July 2021. Archived from the original on 15 August 2021. Retrieved 11 October 2021.
  156. Mohon, Lee (25 September 2023). "All Engines Added to NASA's Artemis II Moon Rocket Core Stage – Artemis". NASA Blogs. Archived from the original on 25 September 2023. Retrieved 25 September 2023.
  157. Clark, Stephen (29 September 2023). "Rocket Report: Iran launches satellite; Artemis II boosters get train ride". Ars Technica. Archived from the original on 29 September 2023. Retrieved 2 October 2023.
  158. Sloss, Philip (2 May 2023). "Artemis II Moon mission transitioning from planning to preparation". NASASpaceFlight.com. Archived from the original on 2 May 2023. Retrieved 6 June 2023.
  159. Sloss, Philip (25 July 2022). "Boeing aiming to deliver second SLS Core Stage to NASA in March". NASASpaceFlight.com. Archived from the original on 31 August 2022. Retrieved 30 July 2022.
  160. "Boeing delivers second stage of SLS rocket to NASA - AGN Boeing delivers second stage of SLS rocket to NASA". 17 July 2024.
  161. 1 2 "SLS Monthly Highlights February 2020" (PDF). NASA. February 2020. Archived (PDF) from the original on 11 October 2021. Retrieved 11 October 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  162. "S.3729 – National Aeronautics and Space Administration Authorization Act of 2010". United States Congress. 11 October 2010. Archived from the original on 28 April 2021. Retrieved 14 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  163. Davis, Jason (3 October 2016). "To Mars, with a monster rocket: How politicians and engineers created NASA's Space Launch System". The Planetary Society. Archived from the original on 25 September 2020. Retrieved 14 September 2020.
  164. 1 2 3 4 Davis, Jason (17 May 2017). "The anatomy of a delay: Here's a timeline of twists and turns for NASA's SLS and Orion programs". The Planetary Society. Archived from the original on 7 August 2020. Retrieved 18 March 2022.
  165. Harwood, William (14 September 2011). "NASA unveils new super rocket for manned flights beyond Earth orbit". CBS News. Archived from the original on 10 August 2020. Retrieved 14 September 2020.
  166. "NASA's Giant Rocket for Deep-Space Travel Passes Key Review". Space.com. 26 July 2012. Archived from the original on 13 May 2021. Retrieved 18 March 2022.
  167. Bergin, Chris (29 February 2012). "Exploration Mission 1: SLS and Orion mission to the Moon outlined". NASASpaceFlight.com. NASASpaceFlight. Archived from the original on 24 August 2022. Retrieved 2 September 2022.
  168. Foust, Jeff (10 December 2014). "NASA Says SLS and Orion Will Slip to 2018 Despite Extra Funding". SpaceNews.
  169. Foust, Jeff (13 April 2017). "NASA inspector general foresees additional SLS/Orion delays". SpaceNews. Archived from the original on 3 October 2021. Retrieved 14 September 2020.
  170. Clark, Stephen (28 April 2017). "NASA confirms first flight of Space Launch System will slip to 2019". Spaceflight Now. Archived from the original on 26 December 2017. Retrieved 29 April 2017.
  171. Clark, Stephen (20 November 2017). "NASA expects first Space Launch System flight to slip into 2020". Spaceflight Now. Archived from the original on 9 August 2018. Retrieved 24 May 2018.
  172. Patel, Neel (31 December 2019). "The seven most exciting space missions of 2020". MIT Technology Review. Archived from the original on 8 August 2020. Retrieved 18 March 2022.
  173. 1 2 Gebhardt, Chris (21 February 2020). "SLS debut slips to April 2021, KSC teams working through launch sims". NASASpaceFlight. Archived from the original on 6 August 2020. Retrieved 21 February 2020.
  174. Foust, Jeff (2 March 2020). "First SLS launch now expected in second half of 2021". SpaceNews. Archived from the original on 9 September 2023. Retrieved 19 March 2022.
  175. Clark, Stephen (1 May 2020). "Hopeful for launch next year, NASA aims to resume SLS operations within weeks". Archived from the original on 13 September 2020. Retrieved 3 May 2020.
  176. "SMSR Integrated Master Schedule" (PDF). Office of Safety and Mission Assurance. NASA. 7 June 2021. Archived from the original (PDF) on 14 June 2021. Retrieved 9 June 2021.
  177. Clark, Stephen (31 August 2021). "NASA's hopes waning for SLS test flight this year". Spaceflight Now. Archived from the original on 1 September 2021. Retrieved 1 September 2021.
  178. Berger, Eric (31 August 2021). "NASA's big rocket misses another deadline, now won't fly until 2022". Ars Technica. Archived from the original on 1 September 2021. Retrieved 1 September 2021.
  179. Clark, Steven (22 October 2021). "NASA targets February launch for Artemis 1 moon mission". Spaceflight Now. Archived from the original on 13 January 2022. Retrieved 18 March 2022.
  180. Sloss, Philip (21 October 2021). "Artemis 1 Orion joins SLS to complete vehicle stack". NASASpaceFlight . Archived from the original on 30 December 2021. Retrieved 22 October 2021.
  181. "Artemis I Integrated Testing Update". NASA. 17 December 2021. Archived from the original on 11 December 2022. Retrieved 18 December 2021.
  182. Wall, Mike (24 February 2022). "NASA's Artemis 1 moon mission, 1st flight of new megarocket, won't launch until May". Space.com . Archived from the original on 18 March 2022. Retrieved 25 February 2022.
  183. Barker, Nathan; Gebhardt, Chris (17 March 2022). "NASA moon rocket SLS rolls out to "rebuilt" LC-39B ahead of Artemis 1 rehearsal". NASASpaceFlight . Archived from the original on 17 March 2022. Retrieved 18 March 2022.
  184. Clark, Stephen (26 April 2022). "NASA's moon rocket rolls back to Vehicle Assembly Building for repairs". Spaceflight Now. Archived from the original on 26 April 2022. Retrieved 26 April 2022.
  185. Clark, Stephen (22 June 2022). "NASA not planning another Artemis 1 countdown dress rehearsal". Spaceflightnow. Archived from the original on 23 June 2022. Retrieved 24 June 2022.
  186. "The SLS rocket finally has a believable launch date, and it's soon". Ars Technica. 20 July 2022. Archived from the original on 20 July 2022. Retrieved 20 July 2022.
  187. Anthony Cuthbertson; Vishwam Sankaran; Johanna Chisholm; Jon Kelvey (29 August 2022). "Nasa scrambles to fix Moon rocket issues ahead of Artemis launch – live". The Independent. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  188. Ashley Strickland (29 August 2022). "Today's Artemis I launch has been scrubbed after engine issue". CNN. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  189. Foust, Jeff (29 August 2022). "First Artemis 1 launch attempt scrubbed". SpaceNews. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  190. 1 2 Foust, Jeff (30 August 2022). "Next Artemis 1 launch attempt set for Sept. 3". SpaceNews . Archived from the original on 3 September 2022. Retrieved 31 August 2022.
  191. 1 2 Strickland, Ashley (1 September 2022). "Artemis I launch team is ready for another 'try' on Saturday". CNN. Warner Bros Discovery. Archived from the original on 3 September 2022. Retrieved 2 September 2022.
  192. Foust, Jeff (3 September 2022). "Second Artemis 1 launch attempt scrubbed". SpaceNews. Archived from the original on 17 November 2022. Retrieved 4 September 2022.
  193. 1 2 Gebhardt, Chris (8 September 2022). "NASA discusses path to SLS repairs as launch uncertainty looms for September, October". NASASpaceflight. Archived from the original on 8 September 2022. Retrieved 8 September 2022.
  194. Kraft, Rachel (12 September 2022). "NASA Adjusts Dates for Artemis I Cryogenic Demonstration Test and Launch; Progress at Pad Continues". NASA. Archived from the original on 12 September 2022. Retrieved 16 September 2022.
  195. 1 2 Kraft, Rachel (24 September 2022). "Artemis I Managers Wave Off Sept. 27 Launch, Preparing for Rollback – Artemis". NASA Blogs. Archived from the original on 24 September 2022. Retrieved 24 September 2022.
  196. 1 2 "NASA to Roll Artemis I Rocket and Spacecraft Back to VAB Tonight – Artemis". blogs.nasa.gov. 26 September 2022. Archived from the original on 26 September 2022. Retrieved 26 September 2022.
  197. 1 2 Foust, Jeff (26 September 2022). "SLS to roll back to VAB as hurricane approaches Florida". SpaceNews. Archived from the original on 16 January 2023. Retrieved 27 September 2022.
  198. "Teams Confirm No Damage to Flight Hardware, Focus on November for Launch". NASA . 30 September 2022. Archived from the original on 6 October 2022. Retrieved 30 September 2022.
  199. "NASA Sets Date for Next Launch Attempt for Artemis I Moon Mission". NASA . 12 October 2022. Archived from the original on 12 October 2022. Retrieved 13 October 2022.
  200. "Weather remains 70% Favorable, Teams on Track to Begin Countdown Saturday – Artemis". 26 August 2022. Archived from the original on 27 August 2022. Retrieved 27 August 2022.
  201. Kraft, Rachel (3 September 2022). "Artemis I Launch Attempt Scrubbed". NASA Blogs. Archived from the original on 28 December 2022. Retrieved 3 September 2022.
  202. "SLS Artemis I Mission". RocketLaunch.org. 16 November 2022. Archived from the original on 1 September 2024. Retrieved 27 March 2024.
  203. Roulette, Joey; Gorman, Steve (16 November 2022). "NASA's next-generation Artemis mission heads to moon on debut test flight". Reuters. Archived from the original on 16 November 2022. Retrieved 16 November 2022.
  204. Sloss, Philip (4 December 2020). "New Artemis 1 schedule uncertainty as NASA EGS ready to continue SLS Booster stacking". nasaspaceflight. Archived from the original on 28 September 2021. Retrieved 28 September 2021.
  205. Clark, Stephen (9 March 2021). "Stacking complete for SLS boosters". Spaceflight Now. Archived from the original on 3 June 2021. Retrieved 28 September 2021.
  206. Stephen, Clark (15 January 2021). "NASA proceeds with SLS booster stacking in Florida before core stage arrives". Spaceflight Now. Archived from the original on 7 March 2021. Retrieved 28 September 2021.
  207. "SLS returns to the pad for next Artemis launch attempt". 4 November 2022. Retrieved 16 November 2022.
  208. Foust, Jeff (16 September 2015). "First Crewed Orion Mission May Slip to 2023". SpaceNews. Archived from the original on 30 September 2021. Retrieved 23 June 2016.
  209. Clark, Stephen (16 September 2015). "Orion spacecraft may not fly with astronauts until 2023". Spaceflight Now. Archived from the original on 1 July 2016. Retrieved 23 June 2016.
  210. Clark, Smith (1 May 2014). "Mikulski "Deeply Troubled" by NASA's Budget Request; SLS Won't Use 70 Percent JCL". spacepolicyonline.com. Archived from the original on 5 August 2016. Retrieved 23 June 2016.
  211. "Report No. IG-20-018: NASA's Management of the Orion Multi-Purpose Crew Vehicle Program" (PDF). Office of Inspector General (United States). NASA. 16 July 2020. Archived (PDF) from the original on 19 July 2020. Retrieved 17 July 2020.
  212. Foust, Jeff (9 November 2021). "NASA delays human lunar landing to at least 2025". SpaceNews . Archived from the original on 1 September 2022. Retrieved 9 November 2021.
  213. "NASA's Artemis 2 mission around Moon set for November 2024". Phys.org . 7 March 2023. Archived from the original on 7 March 2023. Retrieved 10 March 2023.
  214. Tingley, Brett (9 January 2024). "Astronauts won't walk on the moon until 2026 after NASA delays next 2 Artemis missions". Space.com . Archived from the original on 11 January 2024. Retrieved 9 January 2024.
  215. Donaldson, Abbey A. (5 December 2024). "NASA Shares Orion Heat Shield Findings, Updates Artemis Moon Missions". NASA . Retrieved 5 December 2024.
  216. Roulette, Joey; Gorman, Steve (16 November 2022). "NASA's next-generation Artemis mission heads to moon on debut test flight". Reuters. Retrieved 16 November 2022.
  217. Foust, Jeff (21 May 2019). "In 2020, NASA Will Send Living Things to Deep Space for First Time Since Apollo". Space.com . Archived from the original on 6 August 2019. Retrieved 6 August 2019. BioSentinel is one of 13 cubesats flying aboard the Artemis I mission, which is currently targeted for mid-2020. [...] The other 12 cubesats flying aboard Artemis I are a diverse lot. For example, the Lunar Flashlight and Lunar IceCube missions will hunt for signs of water ice on the moon, and Near-Earth Asteroid Scout will use a solar sail to rendezvous with a space rock.
  218. Northon, Karen (9 June 2017). "Three DIY CubeSats Score Rides on Exploration Mission-1". National Aeronautics and Space Administration (NASA). Archived from the original on 6 August 2019. Retrieved 6 August 2019. NASA's Space Technology Mission Directorate (STMD) has awarded rides for three small spacecraft on the agency's newest rocket, and $20,000 each in prize money, to the winning teams of citizen solvers competing in the semi-final round of the agency's Cube Quest Challenge.
  219. Crane, Aimee (11 June 2019). "Artemis 1 Flight Control Team Simulates Mission Scenarios". National Aeronautics and Space Administration (NASA). Archived from the original on 6 August 2019. Retrieved 6 August 2019. ...after the Space Launch System performs the Trans-Lunar Injection burn that sends the spacecraft out of Earth orbit and toward the Moon.
  220. Clark, Stephen (22 July 2019). "First moon-bound Orion crew capsule declared complete, major tests remain". SpaceflightNow. Archived from the original on 6 August 2019. Retrieved 6 August 2019. The Artemis 1 mission profile. Credit: NASA [...] The Artemis 1 mission sent the Orion spacecraft into a distant retrograde lunar orbit and back...
  221. 1 2 Donaldson, Abbey A. (5 December 2024). "NASA Shares Orion Heat Shield Findings, Updates Artemis Moon Missions". NASA . Retrieved 5 December 2024.
  222. Foust, Jeff (9 November 2021). "NASA delays human lunar landing to at least 2025". SpaceNews . Retrieved 9 November 2021.
  223. Foust, Jeff (13 March 2023). "NASA planning to spend up to $1 billion on space station deorbit module". SpaceNews . Retrieved 13 March 2023.
  224. 1 2 Lueders, Kathryn; Free, Jim (18 January 2022). NASA Advisory Council HEO Committee Public Meeting (PDF). NAC/HEO CMTE 2022. NASA. p. 16. Retrieved 20 January 2022.
  225. Foust, Jeff (30 October 2022). "Lunar landing restored for Artemis 4 mission". SpaceNews . Retrieved 31 October 2022.
  226. https://www.nasa.gov/wp-content/uploads/2024/03/nasa-fiscal-year-2025-budget-summary.pdf
  227. Foust, Jeff (20 January 2022). "NASA foresees gap in lunar landings after Artemis 3". SpaceNews . Retrieved 20 January 2022.
  228. 1 2 Foust, Jeff (8 July 2021). "Supply chain, Artemis program limit SLS use for science missions". SpaceNews . Retrieved 27 November 2024.
  229. 1 2 Berger, Eric (23 July 2021). "SpaceX to launch the Europa Clipper mission for a bargain price". Ars Technica . Retrieved 28 November 2021.
  230. Carter, Jamie (27 September 2021). "The $3.4 Billion Plan For NASA To Explore 'Pluto's Twin' And The Rings Of Neptune Then Execute A 'Death Dive'". Forbes. Archived from the original on 5 October 2021. Retrieved 13 October 2021.
  231. Rymer, Abigail M.; et al. (8 September 2021). "Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System". The Planetary Science Journal. 2 (5): 184. Bibcode:2021PSJ.....2..184R. doi: 10.3847/PSJ/abf654 . S2CID   237449259.
  232. Foust, Jeff (31 March 2017). "Europa lander work continues despite budget uncertainty". SpaceNews. Retrieved 31 March 2017.
  233. Foust, Jeff (17 February 2019). "Final fiscal year 2019 budget bill secures US$21.5 billion for NASA". SpaceNews.
  234. Europa Lander Mission Concept Overview Archived 31 January 2021 at the Wayback Machine Grace Tan-Wang, Steve Sell, Jet Propulsion Laboratory, NASA, AbSciCon2019, Bellevue, Washington. 26 June 2019 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  235. Clark, Stephen (14 July 2020). "Five years after New Horizons flyby, scientists assess next mission to Pluto". Spaceflightnow. Archived from the original on 6 October 2021. Retrieved 13 October 2021.
  236. "Habitable Exoplanet Observatory Final Report" (PDF). Jet Propulsion Laboratory . 25 August 2019. Archived (PDF) from the original on 11 December 2019. Retrieved 11 May 2020. Section 9-11 9.4.1 Basis of estimate, p. 281.
  237. "Origins Space Telescope Mission Concept Study Report" (PDF). 11 October 2019. p. ES-11. Archived (PDF) from the original on 12 July 2020. Retrieved 14 May 2020. The launch cost (US$500 million for the SLS launch vehicle, as advised by NASA Headquarters) is also included.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  238. Siegel, Ethan (19 September 2017). "New Space Telescope, 40 Times The Power Of Hubble, To Unlock Astronomy's Future". Forbes. Archived from the original on 5 July 2021. Retrieved 13 October 2021.
  239. "Lynx X-Ray Observatory" (PDF). NASA. Archived (PDF) from the original on 16 April 2021. Retrieved 13 October 2021.
  240. Billings, Lee (12 November 2019). "Proposed Interstellar Mission Reaches for the Stars, One Generation at a Time". Scientific American. Archived from the original on 25 July 2021. Retrieved 13 October 2021.
  241. Potter, Sean Sean (27 July 2022). "NASA Prepares for Space Launch System Rocket Services Contract". NASA. Archived from the original on 10 August 2022. Retrieved 10 August 2022.
  242. Davenport, Christian (16 November 2022). "Relief and pride as NASA's huge SLS rocket finally flies". The Washington Post . ISSN   0190-8286 . Retrieved 29 July 2023.
  243. 1 2 3 4 "NASA'S MANAGEMENT OF SPACE LAUNCH SYSTEM PROGRAM COSTS AND CONTRACTS" (PDF). NASA – Office of Inspector General – Office of Audits. 10 March 2020. Archived (PDF) from the original on 28 August 2020. Retrieved 14 September 2020. Based on our review of SLS Program cost reporting, we found that the Program exceeded its Agency Baseline Commitment (ABC) by at least 33 percent at the end of FY 2019, a figure that could reach 43 percent or higher if additional delays push the launch date for Artemis I beyond November 2020. This is due to cost increases tied to Artemis I and a December 2017 replan that removed almost $1 billion of costs from the ABC without lowering the baseline, thereby masking the impact of Artemis I's projected 19-month schedule delay from November 2018 to a June 2020 launch date. Since the replan, the SLS Program now projects the Artemis I launch will be delayed to at least spring 2021 or later. Further, we found NASA's ABC cost reporting only tracks Artemis I-related activities and not additional expenditures of almost $6 billion through FY 2020 that are not being reported or tracked through the official congressional cost commitment or the ABC. [...] as a result of delaying Artemis I up to 19 months to June 2020, NASA conducted a replan of the SLS Program in 2017 and removed $889 million in Booster and RS-25 Engine-related development costs because SLS Program officials determined those activities were not directly tied to Artemis I. [...] In our judgement, the removal of these costs should have reduced the SLS Program's ABC development costs from $7.02 billion to $6.13 billion. [...] SLS Program and HEOMD officials disagreed with our assessment and stated the SLS Program's change in cost estimates for the Booster and Engines element offices were not a removal of costs but rather a reallocation of those activities to appropriately account for them as non-Artemis I costs. [...] Federal law requires that any time Agency program managers have reasonable knowledge that development costs are likely to exceed the ABC by more than 30 percent, they must notify the NASA Administrator. Once the Administrator determines the SLS Program will exceed the development cost baseline by 30 percent or more, NASA is required to notify Congress and rebaseline program costs and schedule commitments. If the Administrator notifies Congress of the need to rebaseline, NASA is required to stop funding program activities within 18 months unless Congress provides approval and additional appropriations. In our judgement, using NASA's cost estimates from October 2019 and accounting for the removed costs from the replan, the SLS Program was required to rebaseline when the program exceeded its ABC by 33 percent at the end of FY 2019, an increase that could reach 43 percent or higher by the Artemis I launch date.
  244. 1 2 3 Berger, Eric (9 February 2021). "So long Senator Shelby: Key architect of SLS rocket won't seek reelection". Ars Technica . Archived from the original on 28 August 2024. Retrieved 28 August 2024.
  245. Brown, David W. (17 March 2021). "NASA's Last Rocket". The New York Times . ISSN   0362-4331. Archived from the original on 18 December 2023. Retrieved 29 August 2024.
  246. Davenport, Christian (16 November 2022). "Relief and pride as NASA's huge SLS rocket finally flies". Washington Post . ISSN   0190-8286. Archived from the original on 7 February 2023. Retrieved 29 August 2024.
  247. Berger, Eric (9 September 2016). "How I learned to stop worrying and love the big $60B NASA rocket". Ars Technica . Archived from the original on 26 July 2024. Retrieved 28 August 2024.
  248. Berger, Eric (10 July 2024). "Congress apparently feels a need for "reaffirmation" of SLS rocket". Ars Technica . Archived from the original on 27 August 2024. Retrieved 28 August 2024.
  249. 1 2 Ferris Valyn (15 September 2011). "Monster Rocket Will Eat America's Space Program". Space Frontier Foundation. Archived from the original on 6 October 2011. Retrieved 16 September 2011.
  250. "Congressman, Space Frontier Foundation, And Tea Party In Space Call For NASA SLS Investigation". moonandback.com. 4 October 2011. Archived from the original on 3 October 2011. Retrieved 20 October 2011.
  251. "The Senate Launch System". Competitive Space Task Force. 4 October 2011. Archived from the original on 27 October 2011. Retrieved 20 October 2011.
  252. "Garver: NASA Should Cancel SLS and Mars 2020 Rover". Space News. January 2014. Archived from the original on 3 October 2021. Retrieved 25 August 2015.
  253. Foust, Jeff (3 January 2014). "Garver: NASA Should Cancel SLS and Mars 2020 Rover". SpaceNews.
  254. "New Report Finds Nasa Awarded Boeing Large Fees Despite SLS Launch Slips". ArsTechnica. 19 June 2019. Archived from the original on 14 August 2019. Retrieved 1 August 2019.
  255. "Space News: Contractors continue to win award fees despite SLS and Orion delays". Space News. 19 June 2019. Archived from the original on 3 October 2021. Retrieved 1 August 2019.
  256. "NASA HUMAN SPACE EXPLORATION: Persistent Delays and Cost Growth Reinforce Concerns over Management of Programs" (PDF). GAO. Archived (PDF) from the original on 3 October 2021. Retrieved 15 September 2020. NASA's current approach for reporting cost growth misrepresents the cost performance of the program and thus undermines the usefulness of a baseline as an oversight tool. NASA's space flight program and project management requirements state that the agency baseline commitment for a program is the basis for the agency's commitment to the Office of Management and Budget (OMB) and the Congress based on program requirements, cost, schedule, technical content, and an agreed-to joint cost and schedule confidence level. Removing effort that amounts to more than a tenth of a program's development cost baseline is a change in the commitment to OMB and the Congress and results in a baseline that does not reflect actual effort. [...] Further, the baseline is a key tool against which to measure the cost and schedule performance of a program. A program must be rebaselined and reauthorized by the Congress if the Administrator determines that development costs will increase by more than 30 percent. Accounting for shifted costs, our analysis indicates that NASA has reached 29.0 percent development cost growth for the SLS program. [...] In addition, as we previously reported in May 2014, NASA does not have a cost and schedule baseline for SLS beyond the first flight. As a result, NASA cannot monitor or track costs shifted beyond EM-1 against a baseline. We recommended that NASA establish cost and schedule baselines that address the life cycle of each SLS increment, as well as for any evolved Orion or ground systems capability. NASA partially concurred with the recommendation, but has not taken any action to date. [...] By not adjusting the SLS baseline to account for the reduced scope, NASA will continue to report costs against an inflated baseline, hence underreporting the extent of cost growth. NASA's Associate Administrator and Chief Financial Officer stated that they understood our rationale for removing these costs from the EM-1 baseline and agreed that not doing so could result in underreporting of cost growth. Further, the Associate Administrator told us that the agency will be relooking at the SLS program's schedule, baseline, and calculation of cost growth.
  257. Review of U.S. Human Space Flight Plans Committee; Augustine, Austin; Chyba, Kennel; Bejmuk, Crawley; Lyles, Chiao; Greason, Ride (October 2009). "Seeking A Human Spaceflight Program Worthy of A Great Nation" (PDF). NASA. Archived (PDF) from the original on 16 February 2019. Retrieved 15 April 2010.
  258. 1 2 Henry Vanderbilt (15 September 2011). "Impossibly High NASA Development Costs Are Heart of the Matter". moonandback.com. Archived from the original on 31 March 2012. Retrieved 26 January 2012.
  259. "Statement before the Committee on Science, Space, and Technology US House of Representatives Hearing: A Review of the NASA's Space Launch System" (PDF). The Planetary Society. 12 July 2011. Archived from the original (PDF) on 29 March 2012. Retrieved 26 January 2012.
  260. Rohrabacher, Dana (14 September 2011). "Nothing New or Innovative, Including It's[sic] Astronomical Price Tag". Archived from the original on 24 September 2011. Retrieved 14 September 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  261. Messier, Doug (24 August 2011). "Rohrabacher calls for "emergency" funding for CCDev". Parabolic Arc. parabolicarc.com. Archived from the original on 26 November 2014. Retrieved 15 September 2011.
  262. Jeff Foust (15 September 2011). "A monster rocket, or just a monster?". The Space Review. Archived from the original on 17 October 2011. Retrieved 20 October 2011.
  263. Jeff Foust (1 November 2011). "Can NASA develop a heavy-lift rocket?". The Space Review. Archived from the original on 15 October 2011. Retrieved 20 October 2011.
  264. Mohney, Doug (21 October 2011). "Did NASA Hide In-space Fuel Depots To Get a Heavy Lift Rocket?". Satellite Spotlight. Archived from the original on 3 March 2016. Retrieved 10 November 2011.
  265. "Propellant Depot Requirements Study" (PDF). HAT Technical Interchange Meeting. 21 July 2011. Archived (PDF) from the original on 1 October 2021. Retrieved 25 May 2012.
  266. Cowing, Keith (12 October 2011). "Internal NASA Studies Show Cheaper and Faster Alternatives to the Space Launch System". SpaceRef. Archived from the original on 3 October 2021. Retrieved 10 November 2011.
  267. "Near Term Space Exploration with Commercial Launch Vehicles Plus Propellant Depot" (PDF). Georgia Institute of Technology / National Institute of Aerospace. 2 September 2010. Archived (PDF) from the original on 4 February 2016. Retrieved 7 March 2012.
  268. "Affordable Exploration Architecture" (PDF). United Launch Alliance. 2009. Archived from the original (PDF) on 21 October 2012.
  269. Grant Bonin (6 June 2011). "Human spaceflight for less: the case for smaller launch vehicles, revisited". The Space Review. Archived from the original on 23 November 2012. Retrieved 20 September 2011.
  270. Berger, Eric (1 August 2019). "The SLS rocket may have curbed development of on-orbit refueling for a decade". Ars Technica. Archived from the original on 5 August 2019. Retrieved 5 August 2019.
  271. Strickland, John K. Jr. "The SpaceX Falcon Heavy Booster: Why Is It Important?". National Space Society. Archived from the original on 8 July 2015. Retrieved 4 January 2012.
  272. "NASA Studies Scaled-Up Falcon, Merlin". Aviation Week. 2 December 2010. Archived from the original on 27 July 2012.
  273. "Bolden talks expectations for Biden's space policy". Politico . 2020. Archived from the original on 11 September 2020. Retrieved 11 September 2020.
  274. "Delta IV Launch Services User's Guide" (PDF). United Launch Alliance. Archived (PDF) from the original on 21 September 2018. Retrieved 13 April 2024.
  275. --> | vac: 9.1 MN (2,049,200 lbf) [10] }} | SI =
    • SL: 366 s (3.59 km/s)
    • vac: 452 s (4.43 km/s)
    | burntime = 480 seconds | fuel = LH2 / LOX}} {{Infobox rocket/Stage | type = stage | diff = Block 1 | stageno = Second | name = ICPS | length = 13.7 m (45 ft) [11] | diameter = {{Unbulleted list | 5 m (16 ft) (LH2 tank) | 3.2 m (10 ft) (LOX tank) [275] [17] [25] [26] [53] [78] [98] [110] [100] [71] [137] [27] [32] [191] [192] [194] [196] [197] [198] [242] [138] [245] [9] [10] [11] <ref name='RL10'> "RL10 Engine". Archived from the original on 9 July 2021. Retrieved 5 July 2021.