Mission type | Outer planetary, heliosphere, and interstellar medium exploration |
---|---|
Operator | NASA / Johns Hopkins Applied Physics Laboratory |
Website | interstellarprobe |
Spacecraft properties | |
Launch mass | 860 kg (1,900 lb) |
Power | 470 watts (at launch) |
Start of mission | |
Launch date | 2036 |
Rocket | Space Launch System Block 2 |
Flyby of Jupiter | |
Closest approach | 2037 |
Distance | ~4 000 km |
Interstellar Probe (ISP) is a proposed NASA space probe designed to explore and characterize the heliosphere and interstellar space. The study was originally proposed in 2018 by NASA for the Applied Physics Laboratory. It would have a baseline launch between 2036 and 2041. [1] The probe would launch on a direct hyperbolic trajectory to encounter Jupiter after six to seven months, after which the probe would travel at a speed of about 6–7 astronomical units (900,000,000–1.05×109 kilometres) per year, leaving the heliosphere after only 16 years. [2]
The probe may have the opportunity to encounter minor planets on the way out, including Orcus and Quaoar, though such flybys would require specific launch dates. With next-generation radioisotope thermoelectric generators (RTGs), the mission would be designed to last for over 50 years after its launch, a similar feat reached by the Voyager 1 and 2 probes despite their intended 5-year lifetime. The mission has been called "Voyager on steroids". [2]
Interstellar probes such as the Voyager program were made only with the intent to visit the outer planets, with the added interstellar mission as a mere bonus. Their lifetime had never been expected to be much longer than 12 years at the most, but the probes have lasted for upwards of four decades thus far. Both Voyagers left the heliosphere in the 2010s; Voyager 1 in 2012, [3] and 2 in 2018. [4]
While their readings have been valuable, many of their instruments have been shut off due to a lack of power in their RTGs. In addition, neither of them are headed toward the IBEX ribbon, a region discovered by the Interstellar Boundary Explorer where energetic neutral atoms (ENAs) seem to highly affect the heliosphere and are able to breach it at unprecedented rates. [5]
The main goals of the Interstellar mission include characterizing the heliosphere as a habitable astrosphere by its global nature, its interactions with the Sun and the interstellar medium, and the nature of said interstellar medium. Similar goals may include viewing the Sun as a habitable exoplanetary system from beyond, with potential outbound giant or dwarf planet flybys along the way depending on chosen launch date, and understanding the universe from beyond the heliosphere. [1]
The probe would contain two differing scientific payloads, both weighing about 85–90 kg (187–198 lb). One would prioritize Lyman-alpha science, whereas the other would prioritize visible and infrared imaging of flyby targets. [1] Payloads highlighted in red are exclusive to the baseline payload. Instruments in green are intended for the augmented flyby payload.
Instrument (abbr.) | Dimension, range, resolution | Heritage |
---|---|---|
Magnetometer (MAG) | Electromagnetic radiation: 0.01–100 nT | Magnetospheric Multiscale: DFG |
Plasma Waves (PWS) | Plasma wave observations: ~1 Hz – 5 MHz, ≤0.7 μV/m at 3 kHz, ∆f/f ≤ 4%, ≤60 s full spectrum | Van Allen: EFW |
Plasma Subsystem (PLS) | Ion spectrometer: < 3 eV/e to 20 keV/e | Parker Solar Probe: SWEAP, Span-A |
Pick-Up Ions (PUI) | Ion counter: 0.5–78 keV/e | Ulysses : SWICS |
Energetic Particles (EPS) | Ionization analysis: 20 keV – 20 MeV | Parker Solar Probe: IS☉IS, EPI-Lo |
Cosmic Rays (CRS) | Cosmic ray analysis: H to Sn; 10 MeV/nuc – 1 GeV/nuc | Parker Solar Probe: IS☉IS, EPI-Hi |
Interstellar Dust Analyzer (IDA) | Dust analysis: 10−19 to 10−14 g | Interstellar Mapping and Acceleration Probe: IDEX |
Neutral Mass Spectrometer (NMS) | H, 3 He , 4 He , 14 N , 16 O , 20 Ne , 22 Ne , 36 Ar , 38 Ar , m/Δm ≥ 100 | Jupiter Icy Moons Explorer: NMS |
Energetic Neutral Atom Imager (ENA) | Images emission of energetic neutral atoms; ~1–100 keV H | Interstellar Mapping and Acceleration Probe: IMAP-Ultra |
Lyman-Alpha Spectrograph (LYA) | Mapping solar wind interactions with interstellar medium: ±100 km/s Doppler range, <10 km/s resolution | MAVEN: IUVS |
Visible-Near-IR (VIR) | Flyby imaging: 0.4–4 μm; ≥ 5 ch. ≤0.975 μm >240 ch. >0.975 μm | New Horizons : Ralph |
Visible-IR Mapper (IRM) | Infrared mapping: 0.5–15 μm 30–100 μm | New Horizons : LEISA, CIBER-2 |
The baseline launch would be in 2036 using a Space Launch System in its Block 2 configuration, featuring an additional Centaur and Star 48BV booster. This launch would put the probe on a direct trajectory to Jupiter, and after a mere seven months the probe would make a gravity assist to speed out at about 95 km/s (about 216000 mph). [1] Alternative trajectories include bringing the Star 48 booster for a burn upon closest approach; one trajectory involving that burn at Jupiter with a slightly longer transit time, and another with about the same transit time, but passing ahead of Jupiter for a dive down near the Sun for an even faster escape trajectory. [1]
Further trajectory options have been considered, including performing flybys of Saturn, Uranus, or Neptune depending on launch date to help characterize planetary formation and complement missing data sets, and dwarf planets to help characterize them as New Horizons did in 2015 with its flyby of Pluto. [1]
Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin, Voyager 2. It communicates through the NASA Deep Space Network (DSN) to receive routine commands and to transmit data to Earth. Real-time distance and velocity data are provided by NASA and JPL. At a distance of 162.7 AU from Earth as of May 2024, it is the most distant humanmade object from Earth. The probe made flybys of Jupiter, Saturn, and Saturn's largest moon, Titan. NASA had a choice of either doing a Pluto or Titan flyby; exploration of the moon took priority because it was known to have a substantial atmosphere. Voyager 1 studied the weather, magnetic fields, and rings of the two gas giants and was the first probe to provide detailed images of their moons.
Voyager 2 is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory toward the gas giants Jupiter and Saturn and enabled further encounters with the ice giants Uranus and Neptune. It remains the only spacecraft to have visited either of the ice giant planets, and was the third of five spacecraft to achieve Solar escape velocity, which will allow it to leave the Solar System. It has been sending scientific data to Earth for 46 years, 8 months, 23 days, making it the oldest active space probe. Launched 16 days before its twin Voyager 1, the primary mission of the spacecraft was to study the outer planets and its extended mission is to study interstellar space beyond the Sun's heliosphere.
Pioneer 10 is a NASA space probe launched in 1972 that completed the first mission to the planet Jupiter. Pioneer 10 became the first of five planetary probes and 11 artificial objects to achieve the escape velocity needed to leave the Solar System. This space exploration project was conducted by the NASA Ames Research Center in California. The space probe was manufactured by TRW Inc.
The Voyager program is an American scientific program that employs two interstellar probes, Voyager 1 and Voyager 2. They were launched in 1977 to take advantage of a favorable alignment of the two gas giants Jupiter and Saturn and the ice giants, Uranus and Neptune, to fly near them while collecting data for transmission back to Earth. After launch, the decision was made to send Voyager 2 near Uranus and Neptune to collect data for transmission back to Earth.
Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.
New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern, the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System.
The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun. It takes the shape of a vast, tailed bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium. The "bubble" of the heliosphere is continuously "inflated" by plasma originating from the Sun, known as the solar wind. Outside the heliosphere, this solar plasma gives way to the interstellar plasma permeating the Milky Way. As part of the interplanetary magnetic field, the heliosphere shields the Solar System from significant amounts of cosmic ionizing radiation; uncharged gamma rays are, however, not affected. Its name was likely coined by Alexander J. Dessler, who is credited with the first use of the word in the scientific literature in 1967. The scientific study of the heliosphere is heliophysics, which includes space weather and space climate.
The Grand Tour is a NASA program that would have sent two groups of robotic probes to all the planets of the outer Solar System. It called for four spacecraft, two of which would visit Jupiter, Saturn, and Pluto, while the other two would visit Jupiter, Uranus, and Neptune. The enormous cost of the project, around $1 billion, led to its cancellation and replacement with Mariner Jupiter-Saturn, which became the Voyager program.
An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems.
Neptune has been directly explored by one space probe, Voyager 2, in 1989. As of 2024, there are no confirmed future missions to visit the Neptunian system, although a tentative Chinese mission has been planned for launch in 2024. NASA, ESA, and independent academic groups have proposed future scientific missions to visit Neptune. Some mission plans are still active, while others have been abandoned or put on hold.
Energetic Neutral Atom (ENA) imaging is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.
The Heliophysics Science Division of the Goddard Space Flight Center (NASA) conducts research on the Sun, its extended Solar System environment, and interactions of Earth, other planets, small bodies, and interstellar gas with the heliosphere. Division research also encompasses geospace—Earth's uppermost atmosphere, the ionosphere, and the magnetosphere—and the changing environmental conditions throughout the coupled heliosphere.
The Interstellar Mapping and Acceleration Probe(IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in late April to late May 2025. IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the Sun–Earth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.
Trident is a space mission concept to the outer planets proposed in 2019 to NASA's Discovery Program. The concept includes flybys of Jupiter and Neptune with a focus on Neptune's largest moon Triton.
Neptune Odyssey is an orbiter mission concept to study Neptune and its moons, particularly Triton. The orbiter would enter into a retrograde orbit of Neptune to facilitate simultaneous study of Triton and would launch an atmospheric probe to characterize Neptune's atmosphere. The concept is being developed as a potential large strategic science mission for NASA by a team led by the Applied Physics Laboratory at Johns Hopkins University. The current proposal targets a launch in 2033 using the Space Launch System with arrival at Neptune in 2049, although trajectories using gravity assists at Jupiter have also been considered with launch dates in 2031.
Shensuo, formerly Interstellar Express, is a proposed Chinese National Space Administration program designed to explore the heliosphere and interstellar space. The program will feature two or three space probes that will purportedly be launched in 2024 and follow differing trajectories to encounter Jupiter to assist them out of the Solar System. The first probe, IHP-1, will travel toward the nose of the heliosphere, while the second probe, IHP-2, will fly near to the tail, skimming by Neptune and Triton in January 2038. There may be another probe—tentatively IHP-3—which would launch in 2030 to explore to the northern half of the heliosphere. IHP-1 and IHP-2 would be the sixth and seventh spacecraft to leave the Solar System, as well as first non-NASA probes to achieve this status.
Timeline for the New Horizons interplanetary space probe lists the significant events of the launch, transition phases as well as subsequent significant operational mission events; by date and brief description.
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .