This article needs additional citations for verification .(April 2022) |
Mission type | Didymos orbiter | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Operator | European Space Agency | ||||||||||||
COSPAR ID | 2024-180A | ||||||||||||
SATCAT no. | 61449 | ||||||||||||
Website | heramission | ||||||||||||
Mission duration | 30 days (elapsed) 2 years, 9 months (planned) [lower-alpha 1] | ||||||||||||
Spacecraft properties | |||||||||||||
Manufacturer | OHB SE | ||||||||||||
Launch mass | 1,128 kg (2,487 lb) | ||||||||||||
Dry mass | 350 kg (770 lb) | ||||||||||||
Dimensions | 1.6 × 1.6 × 1.7 m (5.2 × 5.2 × 5.6 ft) | ||||||||||||
Start of mission | |||||||||||||
Launch date | 7 October 2024, 14:52:11 UTC [1] [2] (10:52:11 am EDT) | ||||||||||||
Rocket | Falcon 9 Block 5 (B1061.23) | ||||||||||||
Launch site | Cape Canaveral, SLC‑40 | ||||||||||||
Contractor | SpaceX | ||||||||||||
Flyby of Mars | |||||||||||||
Closest approach | March 2025 [3] | ||||||||||||
Distance | 5,000–8,000 km (3,100–5,000 mi) | ||||||||||||
65803 Didymos orbiter | |||||||||||||
Orbital insertion | 14 December 2026 [3] | ||||||||||||
| |||||||||||||
Mission insignia |
Hera is a spacecraft developed by the European Space Agency for its space safety program. Its primary mission objective is to study the Didymos binary asteroid system that was impacted four years earlier by the NASA Double Asteroid Redirection Test (DART) spacecraft and contribute to validation of the kinetic impact method to deviate a near-Earth asteroid from a colliding trajectory with Earth. It will measure the size and morphology of the crater created as well as the momentum transferred by an artificial projectile impacting an asteroid,which will allow measuring the efficiency of the deflection produced by the impact. It will also analyze the expanding debris cloud caused by the impact. [4]
The spacecraft was launched on 7 October 2024 aboard a SpaceX Falcon 9 launch vehicle and will study the results of the DART impactor,four years after impact. DART impacted the asteroid Dimorphos,the smaller of two objects forming the binary asteroid 65803 Didymos,on 27 September 2022. The launch vehicle,B1061,previously used for the Crew-1 mission,was expended on this flight.[ not verified in body ]
Hera has a mass of 1,128 kg (2,487 lb) and carries a payload of cameras,an altimeter,and a spectrometer. It is carrying two small CubeSat spacecraft,called Milani and Juventas.
Hera is intended to fully characterize the composition and physical properties of the binary asteroid system including,for the first time,the sub-surface and internal structures. It will also perform technological demonstrations linked to operations in the vicinity of a small Solar System body and the deployment of and communication with CubeSats in interplanetary space.
AIDA is the first operational program whose objective is to test a method of deflecting near-Earth asteroids. It was set up in 2013 jointly by scientists supported by NASA and ESA. Its objective is to test the use of an impactor-type device to deflect an asteroid that might strike the Earth. This program provides for the launch to the binary asteroid 65803 Didymos of two spacecraft: the DART impactor developed by NASA responsible for crashing at high speed on the smaller of the two asteroids and the AIM orbiter developed by ESA, which must measure the effects of the impact. After an evaluation phase in the two space agencies, the European Space Agency decided at the end of 2016 to abandon the development of AIM due to lack of sufficient financial support from member states. NASA, for its part, decided to continue the development of DART. In this new context, terrestrial observatories were responsible for taking over partially the role of AIM. The DART project would evolve thereafter by incorporating the LICIACube nano-satellite, released before the impact and responsible for taking and retransmitting the first 100 seconds of it.
In 2017, at the request of several member states of the European Space Agency, the ESA resumed studies of a replacement for AIM, specifically, a mission that was named Hera (named after the Greek goddess of marriage Hera). Hera must fulfill all the objectives assigned to AIM that Earth-based observatories could not, using the components of AIM as much as possible. Hera was planned to be launched in October 2024 to catch a workable planetary/asteroid alignment and study the effects of the DART impact on Dimorphos, the satellite of Didymos, 4 years after it occurred. The Hera mission was subsequently approved by the ESA Ministerial Council in November 2019. In September 2020 the European Space Agency awarded the construction of the spacecraft to a consortium of companies led by OHB, under a contract of 129.4 million euros. It also formalized the scientific team of the mission, made up of a principal investigator, scientific council, and four working groups covering all aspects of the mission and the scientific managers of the instruments. The mission moved to final testing in March 2024. [5]
The main objective of the Hera mission is to evaluate the kinetic impactor method for deflecting a near-Earth object that threatens to crash into Earth. This deflection method consists of modifying the trajectory of the asteroid by launching a spacecraft at a speed of a few kilometers per second. Of all the methods, this is the most mature because it relies on the use of available and inexpensive spacecraft technologies. To fulfill this objective, Hera must determine:
Hera also has high scientific objectives. It must collect the characteristics of the two asteroids: surface characteristics, internal porosity and internal structure. In particular, Hera will be the first mission to measure the subsurface and internal structures of an asteroid. For this, it will use the JuRA low-frequency radar on board the CubeSat Juventas (see below). The entire moon, Dimorphos, will be mapped with a spatial resolution of a few meters and the vicinity of the impact with a resolution of 10 centimeters. The mass of the moon of Didymos will be estimated with high accuracy, allowing a direct estimate of the momentum transfer efficiency from DART impact. [6]
The mission also includes several technological objectives. The most important thing is the production of a guidance software which, by using data from several sensors, will make it possible to reconstruct the surrounding space and thus to independently define a safe trajectory around the asteroid.
Hera must also embark two CubeSats which will be dropped once the asteroid is reached. These CubeSats are:
The DART mission, launched on 24 November 2021 at 06:21 UTC by a Falcon 9 rocket from Vandenberg Space Force Base reached the binary asteroid 65803 Didymos on 26 September 2022, colliding with its satellite Dimorphos at 23:16 UTC at a relative speed of about 6.6 km/s. [7] The impact must change the orbital period of Dimorphos around Didymos, which is 11.9 hours, by a minimum of 73 seconds, which should be observed by terrestrial telescopes.
Hera launched on 7 October 2024 at 14:52 UTC by a Falcon 9 rocket lifting off from Cape Canaveral. [8] The spacecraft will conduct a deep-space maneuver by November. [9] Following a gravitational assist at Mars in March 2025 where Hera will spend some time observing the Martian Moon Deimos, [10] the spacecraft will reach the binary asteroid 65803 Didymos on 28 December 2026, four years after DART, to begin six months of investigation. Hera will be the first to make a rendezvous with a binary asteroid. Once close to the double asteroid, five stages will follow:
Phase | Mission phase | Duration | Mission |
---|---|---|---|
1 | Early Characterization | 6 week | The global shape and mass/gravity, as well as thermal and dynamical properties, of both asteroids will be determined |
2 | Payload Deployment | 2 week | The release of the two CubeSats |
3 | Detailed Characterization | 4 week | Meter-scale mapping of the asteroids and determination of thermal, spectral, and interior properties |
4 | Close Observation | 6 week | High-resolution investigations of a large fraction of the surface area of Dimorphos, including the DART impact crater |
5 | Experimental | 6 week | Morphological, spectral, and thermal properties of Dimorphos |
The main bus of Hera has a box-shape based on a central tube and adapter cone of 1.6 × 1.6 × 1.7 meters. Two solar panel wings extend from opposite sides, and a high-gain dish antenna is mounted on one face. Total launch mass of the spacecraft is approximately 1214 kg, the dry mass is 696 kg. Spacecraft deployed dimensions are 2.2 x 11.4 x 2.2 meters. The solar panels have an area of about 13 square meters. The spacecraft will use 712 W at the nominal 2.4 AU distance. Bi-propellant chemical propulsion is used for 16 orbit control thrusters and 6 reaction control thrusters, all 10-N motors. Total available delta-V is about 1300 m/s. Communications with the ground are X-band (~8.4 GHz), with two low gain antennas in addition to the high-gain dish. S-band communications (~2.2 GHz), using patch antennas, will be used to communicate with the two CubeSats named Juventas and Milani, with a range of 60 km. Spacecraft orientation is maintained by 4 reaction wheels, gyroscopes, using star trackers and solar sensors, as well two Asteroid Framing Cameras (AFC). Attitude guidance is through the Planetary Altimeter (PALT). [12]
The main instruments of Hera are the two AFC cameras (Asteroid Framing Cameras), developed by the company JenaOptronik. Identical and redundant, they each have a FaintStar panchromatic sensor of 1020 x 1020 pixels with a telephoto lens. The field of view is 5.5 x 5.5 degrees, and the spatial resolution reaches one meter at a distance of 10 kilometers. These cameras are to provide physical characteristics of the surface of the asteroid Didymos and Dimorphos as well as the crater created by DART and the Juventas landing zone.[ citation needed ]
HyperScout-H is a hyperspectral imager that must provide images in a spectral range between 665 and 975 nm (visible and near infrared). The instrument makes its observations in 25 distinct spectral bands. It is developed by cosine Remote Sensing. This is a specific version developed for Hera, different from the standard HyperScout.[ citation needed ]
PALT is a micro-Lidar planetary altimeter using a laser emitting an infrared light beam at 1.5 microns. Its track on the ground is 1 meter at an altitude of 1 kilometer (1 milliradian). The altitude measurement accuracy is 0.5 meters. Its frequency is 10 Hertz.[ citation needed ]
TIRI is a thermal infrared imager provided by the JAXA, the Japanese space agency. The spectral range observed is between 7 and 14 microns and it has 6 filters. Its visual range is 13.3 x 10.6°. The spatial resolution is 2.3 meters at a distance of 10 kilometers.[ citation needed ]
The mass of the two asteroids making up the binary system, the characteristics of their gravity field, their rotational speed, and their orbits will be measured using radio wave disturbances caused by the Doppler effect. The measurements relate to the radio exchanges between Hera and Earth stations but also between Hera and the CubeSats. Due to the low orbit in which the CubeSats will circulate, these last measurements are crucial to determine the gravity of Didymos.[ citation needed ]
AFC | HyperScout-H | PALT | TIRI | |
---|---|---|---|---|
Type | Visible Imager | Spectral imager | Altimeter | Thermal infrared imager |
Mass (kg) | <1.5 | 5.5 | 4.5 | <4.4 |
Visual range (degrees) | 5.5 | 15.5 x 8.3 | non-applicable | 13.3 x 10 |
Spatial resolution (microradians) | 94.1 | 133 | 1000 | 226 |
Spectral band (nanometers) | 350-1000 | 665-975 | 700-1400 | |
Others | 25 spectral bands | vertical precision : 0.5 m. | 6 filters | |
Power (Watts) | <1.3 | 2.5 (average) - 4.5 (peak) | <14.5 | 20 (average) - <30 |
Two CubeSat type nanosatellites, named Milani and Juventas, are transported by Hera and released before arrival in the asteroidal system 65803 Didymos. They are responsible for carrying out investigations that complement those of their carrier ship.
Both CubeSats are built around a similar platform. These are 6U-XL CubeSats with a mass (including propellant) of approximately 12 kilograms. They are 3-axis stabilized and have a cold gas propulsion system. They communicate with the mothership in S-band. The Doppler effect affecting radio links is used to measure the characteristics of the gravitational field of the binary system. They have a visible light camera and star trackers which are used to determine the dynamic variations of Didymos. Finally, the two CubeSats are equipped with accelerometers which will be used to determine the properties of the surface of Dimorphos if the CubeSats land on its surface as planned at the end of their mission. Juventas is developed by GomSpace while Milani is made by Tyvak International.
The CubeSat Milani (named after Andrea Milani) aims to take images and measure the characteristics of the possibly present dust. It must map the two asteroids forming the binary asteroid 65803 Didymos, characterize their surface, evaluate the effects of the DART impact, contribute to the measurements of the gravitational field of the asteroids, and determine the characteristics of the dust clouds possibly located around the asteroids.
To fulfill these objectives, it carries two instruments:
Juventas aims to determine the geophysical characteristics of Dimorphos. The probe must map its gravity field and determine its internal structure as well as the characteristics of its surface.
To fulfill these objectives, it carries the following instruments:
An asteroid is a minor planet—an object that is neither a true planet nor an identified comet— that orbits within the inner Solar System. They are rocky, metallic, or icy bodies with no atmosphere, classified as C-type (carbonaceous), M-type (metallic), or S-type (silicaceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across and larger than meteoroids, to Ceres, a dwarf planet almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies.
Asteroid impact avoidance encompasses the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted away, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs would cause, depending on its impact location, massive tsunamis or multiple firestorms, and an impact winter caused by the sunlight-blocking effect of large quantities of pulverized rock dust and other debris placed into the stratosphere. A collision 66 million years ago between the Earth and an object approximately 10 kilometers wide is thought to have produced the Chicxulub crater and triggered the Cretaceous–Paleogene extinction event that is understood by the scientific community to have caused the extinction of all non-avian dinosaurs.
A lander is a spacecraft that descends towards, then comes to rest on the surface of an astronomical body other than Earth. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.
Don Quijote is a past space mission concept that has been studied from 2005 until 2007 by the European Space Agency, and which would investigate the effects of crashing a spacecraft into an asteroid to test whether a spacecraft could successfully deflect an asteroid on a collision course with Earth. The orbiter was designed to last for seven years. The mission did not proceed beyond initial studies.
Active asteroids are small Solar System bodies that have asteroid-like orbits but show comet-like visual characteristics. That is, they show a coma, tail, or other visual evidence of mass-loss, but their orbits remain within Jupiter's orbit. These bodies were originally designated main-belt comets (MBCs) in 2006 by astronomers David Jewitt and Henry Hsieh, but this name implies they are necessarily icy in composition like a comet and that they only exist within the main-belt, whereas the growing population of active asteroids shows that this is not always the case.
65803 Didymos is a sub-kilometer asteroid and binary system that is classified as a potentially hazardous asteroid and near-Earth object of the Apollo group. The asteroid was discovered in 1996 by the Spacewatch survey at Kitt Peak, and its small 160-meter minor-planet moon, named Dimorphos, was discovered in 2003. Due to its binary nature, the asteroid was then named Didymos, the Greek word for 'twin'.
Strictly speaking, a satellite collision is when two satellites collide while in orbit around a third, much larger body, such as a planet or moon. This definition is typically loosely extended to include collisions between sub-orbital or escape-velocity objects with an object in orbit. Prime examples are the anti-satellite weapon tests. There have been no observed collisions between natural satellites, but impact craters may show evidence of such events. Both intentional and unintentional collisions have occurred between man-made satellites around Earth since the 1980s. Anti-satellite weapon tests and failed rendezvous or docking operations can result in orbital space debris, which in turn may collide with other satellites.
A Mars flyby is a movement of spacecraft passing in the vicinity of the planet Mars, but not entering orbit or landing on it. Uncrewed space probes have used this method to collect data on Mars, as opposed to orbiting or landing. A spacecraft designed for a flyby is also known as a "flyby bus" or "flyby spacecraft".
The Asteroid Impact and Deflection Assessment (AIDA) missions are a proposed pair of space probes which will study and demonstrate the kinetic effects of crashing an impactor spacecraft into an asteroid moon. The mission is intended to test and validate impact models of whether a spacecraft could successfully deflect an asteroid on a collision course with Earth.
Patrick Michel is a French planetary scientist, Senior Researcher at CNRS, member of the team TOP of the CNRS and Université Côte d'Azur Lagrange Laboratory at the Côte d'Azur Observatory in Nice (France), and also a Global Fellow of the University of Tokyo.
The Space Safety Programme, formerly the Space Situational Awareness (SSA) programme, is the European Space Agency's (ESA) initiative to monitor hazards from space, determine their risk, make this data available to the appropriate authorities and where possible, mitigate the threat.
Double Asteroid Redirection Test (DART) was a NASA space mission aimed at testing a method of planetary defense against near-Earth objects (NEOs). It was designed to assess how much a spacecraft impact deflects an asteroid through its transfer of momentum when hitting the asteroid head-on. The selected target asteroid, Dimorphos, is a minor-planet moon of the asteroid Didymos; neither asteroid poses an impact threat to Earth, but their joint characteristics made them an ideal benchmarking target. Launched on 24 November 2021, the DART spacecraft successfully collided with Dimorphos on 26 September 2022 at 23:14 UTC about 11 million kilometers from Earth. The collision shortened Dimorphos' orbit by 32 minutes, greatly in excess of the pre-defined success threshold of 73 seconds. DART's success in deflecting Dimorphos was due to the momentum transfer associated with the recoil of the ejected debris, which was substantially larger than that caused by the impact itself.
The Planetary Missions Program Office is a division of NASA headquartered at the Marshall Space Flight Center, formed by the agency's Science Mission Directorate (SMD). Succeeding the Discovery and New Frontiers Program Office, it was established in 2014 to manage the Discovery and New Frontiers programs of low and medium-cost missions by third-party institutions, and the Solar System Exploration program of NASA-led missions that focus on prioritized planetary science objectives. The Discovery and New Frontiers programs were established in 1992 and 2001 respectively, and have launched fourteen primary missions together, along with two missions launched under the administration of the Planetary Missions Program Office. The Solar System Exploration Program was established alongside the office, with three missions planned for launch under the new program.
Dimorphos is a natural satellite or moon of the near-Earth asteroid 65803 Didymos, with which it forms a binary system. The moon was discovered on 20 November 2003 by Petr Pravec in collaboration with other astronomers worldwide. Dimorphos has a diameter of 177 meters (581 ft) across its longest extent and it was the target of the Double Asteroid Redirection Test (DART), a NASA space mission that deliberately collided a spacecraft with the moon on 26 September 2022 to alter its orbit around Didymos. Before the impact by DART, Dimorphos had a shape of an oblate spheroid with a surface covered in boulders but virtually no craters. The moon is thought to have formed when Didymos shed its mass due to its rapid rotation, which formed an orbiting ring of debris that conglomerated into a low-density rubble pile that became Dimorphos today.
Light Italian CubeSat for Imaging of Asteroids is a six-unit CubeSat of the Italian Space Agency (ASI). LICIACube is a part of the Double Asteroid Redirection Test (DART) mission and carries out observational analysis of the Didymos asteroid binary system after DART's impact on Dimorphos. It communicates directly with Earth, sending back images of the ejecta and plume of DART's impact as well as having done asteroidal study during its flyby of the Didymos system from a distance of 56.7 km (35.2 mi), 165 seconds after DART's impact. LICIACube is the first purely Italian autonomous spacecraft in deep space. Data archiving and processing is managed by the Mission Control Center of Argotec. Mission ended sometime in the autumn of 2022
NEO-MAPP is a project for studying planetary defence and asteroid exploration.
Stephan Ulamec is an Austrian geophysicist, born in Salzburg on January 27, 1966, with more than 100 articles in peer-reviewed journals and several participations in space missions and payloads operated by diverse space agencies. He is working at the German Aerospace Center in Cologne. He is regularly giving lectures about his publications in aerospace engineering at the University of Applied Sciences: Fachhochschule FH-Aachen. Main aspects of his work are related to the exploration of small bodies in the solar system.
LUnar Meteoroid Impact Observer (LUMIO) is a planned lunar exploration mission expected to launch as early as 2027. The main goal of the mission is to detect, quantify, and characterize the impacts of near-Earth meteoroids on the lunar far side. The spacecraft consists of a 12-U CubeSat that will operate in a halo orbit around the L2 Lagrange point of the Earth-Moon system. It is an autonomus mission of the European Space Agency and is currently being developed by an international consortium which includes Politecnico di Milano, Argotec, Leonardo, IMT, Nautilus and S&T Norway.