Reaction wheel

Last updated
A small reaction wheel viewed in profile Reaction wheel00.jpg
A small reaction wheel viewed in profile
A momentum/reaction wheel comprising part of a high-accuracy Conical Earth Sensor to maintain a satellite's precise attitude Reaction wheel02.jpg
A momentum/reaction wheel comprising part of a high-accuracy Conical Earth Sensor to maintain a satellite's precise attitude

A reaction wheel (RW) is an electric motor attached to a flywheel, which, when its rotation speed is changed, causes a counter-rotation proportionately through conservation of angular momentum. [1] A reaction wheel can rotate only around its center of mass; it is not capable of moving from one place to another (translational force).

Contents

Reaction wheels are used primarily by spacecraft for three-axis attitude control, and do not require rockets or external applicators of torque, which reduces the mass fraction needed for fuel. They provide a high pointing accuracy, [2] :362 and are particularly useful when the spacecraft must be rotated by very small amounts, such as keeping a telescope pointed at a star.

A reaction wheel is sometimes operated at a constant (or near-constant) rotation speed, to provide a satellite with a large amount of stored angular momentum. Doing so alters the spacecraft's rotational dynamics so that disturbance torques perpendicular to one axis of the satellite (the axis parallel to the wheel's spin axis) do not result directly in spacecraft angular motion about the same axis as the disturbance torque; instead, they result in (generally smaller) angular motion (precession) of that spacecraft axis about a perpendicular axis. This has the effect of tending to stabilize that spacecraft axis to point in a nearly-fixed direction, [2] :362 allowing for a less-complicated attitude control system. Satellites using this "momentum-bias" stabilization approach include SCISAT-1; by orienting the momentum wheel's axis to be parallel to the orbit-normal vector, this satellite is in a "pitch momentum bias" configuration.

Design

For three-axis control, reaction wheels must be mounted along at least three directions, with extra wheels providing redundancy to the attitude control system. A redundant mounting configuration could consist of four wheels along tetrahedral axes, [3] or a spare wheel carried in addition to a three axis configuration. [2] :369 Changes in speed (in either direction) are controlled electronically by computer. The strength of the materials used in a reaction wheel determine the speed at which the wheel would come apart, and therefore how much angular momentum it can store.

Since the reaction wheel is a small fraction of the spacecraft's total mass, easily controlled, temporary changes in its speed result in small changes in angle. The wheels therefore permit very precise changes in a spacecraft's attitude. For this reason, reaction wheels are often used to aim spacecraft carrying cameras or telescopes.

Over time, reaction wheels may build up enough stored momentum to exceed the maximum speed of the wheel, called saturation. However, slowing down the wheels imparts a torque causing undesired rotation. Designers therefore supplement reaction wheel systems with other attitude control mechanisms to cancel out the torque caused by "desaturating" the reaction wheels. [4] Typically designers use "reaction control systems"; arrays of small chemical rocket engines that fire as the wheels slow down to counter the torque the wheels are imparting on the spacecraft as they slow down. [4]

More fuel efficient methods for reaction wheel desaturation have been developed over time. By reducing the amount of fuel the spacecraft needs to be launched with, they increase the useful payload that can be delivered to orbit. These methods include magnetorquers (better known as torque rods), which transfer angular momentum to the Earth through its planetary magnetic field requiring only electrical power and no fuel. [2] :368 They are however limited to areas of space with a sufficiently large magnetic field (such as in low Earth orbit). In the absence of a sufficiently strong magnetic field, the next most efficient practice is to use high-efficiency attitude jets such as ion thrusters.

Examples

Beresheet was launched on a Falcon 9 rocket on 22 February 2019 1:45 UTC, [5] with the goal of landing on the Moon. Beresheet uses the low-energy transfer technique to save fuel. Since its fourth maneuver [6] in its elliptical orbit, to prevent shakes when the amount of liquid fuel ran low, there was a need to use a reaction wheel.

The James Webb Space Telescope has six reaction wheels built by Rockwell Collins Deutschland. [7]

LightSail 2 was launched on 25 June 2019, focused around the concept of a solar sail. LightSail 2 uses a reaction wheel system to change orientation by very small amounts, allowing it to receive different amounts of momentum from the light across the sail, resulting in a higher altitude. [8]

Failures and mission impact

The failure of one or more reaction wheels can cause a spacecraft to lose its ability to maintain attitude (orientation) and thus potentially cause a mission failure. Recent studies conclude that these failures can be correlated with space weather effects. These events probably caused failures by inducing electrostatic discharge in the steel ball bearings of Ithaco wheels, compromising the smoothness of the mechanism. [9]

Two servicing missions to the Hubble Space Telescope have replaced a reaction wheel. In February 1997, the Second Servicing Mission (STS-82) replaced one [10] after 'electrical anomalies', rather than any mechanical problem. [11] Study of the returned mechanism provided a rare opportunity to study equipment that had undergone long-term service (seven years) in space, particularly for the effects of vacuum on lubricants. The lubricating compound was found to be in 'excellent condition'. [11] In 2002, during Servicing Mission 3B (STS-109), astronauts from the shuttle Columbia replaced another reaction wheel. [10] Neither of these wheels had failed and Hubble was designed with four redundant wheels, and maintained pointing ability so long as three were functional. [12]

In 2004, during the mission of the Hayabusa spacecraft, an X-axis reaction wheel failed. The Y-axis wheel failed in 2005, causing the craft to rely on chemical thrusters to maintain attitude control. [13]

From July 2012 to May 11, 2013, two out of the four reaction wheels in the Kepler space telescope failed. This loss severely affected Kepler's ability to maintain a sufficiently precise orientation to continue its original mission. [14] On August 15, 2013, engineers concluded that Kepler's reaction wheels cannot be recovered and that planet-searching using the transit method (measuring changes in star brightness caused by orbiting planets) could not continue. [15] [16] [17] [18] Although the failed reaction wheels still function, they are experiencing friction exceeding acceptable levels, and consequently hindering the ability of the telescope to properly orient itself. The Kepler telescope was returned to its "point rest state", a stable configuration that uses small amounts of thruster fuel to compensate for the failed reaction wheels, while the Kepler team considered alternative uses for Kepler that do not require the extreme accuracy in its orientation needed by the original mission. [19] On May 16, 2014, NASA extended the Kepler mission to a new mission named K2, which uses Kepler differently, but allows it to continue searching for exoplanets. [20] On October 30, 2018, NASA announced the end of the Kepler mission after it was determined that the fuel supply had been exhausted. [21]

The NASA space probe Dawn had excess friction in one reaction wheel in June 2010. It was originally scheduled to depart Vesta and begin its two-and-a-half-year journey to Ceres on August 26, 2012; [22] however, a problem with another of the spacecraft's reaction wheels forced Dawn to briefly delay its departure from Vesta's gravity until September 5, 2012, and it planned to use thruster jets instead of the reaction wheels during the three-year journey to Ceres. [22] The loss of the reaction wheels limited the camera observations on the approach to Ceres.

On the evening of Tuesday, January 18, 2022, a possible failure of one of the Swift Observatory's reaction wheels caused the mission control team to power off the suspected wheel, putting the observatory in safe mode as a precaution. This was the first time a reaction wheel failed on Swift in 17 years. Swift resumed science operations on February 17, 2022. [23]

Similar devices

A control moment gyroscope (CMG) is a related but different type of attitude actuator, generally consisting of a momentum wheel mounted in a one-axis or two-axis gimbal. [2] :362 When mounted to a rigid spacecraft, applying a constant torque to the wheel using one of the gimbal motors causes the spacecraft to develop a constant angular velocity about a perpendicular axis, thus allowing control of the spacecraft's pointing direction. CMGs are generally able to produce larger sustained torques than RWs with less motor heating, and are preferentially used in larger or more-agile (or both) spacecraft, including Skylab, Mir, and the International Space Station.

See also

Related Research Articles

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<i>Mars Observer</i> Failed NASA orbiter mission to Mars (1992–1993)

The Mars Observer spacecraft, also known as the Mars Geoscience/Climatology Orbiter, was a robotic space probe launched by NASA on September 25, 1992, to study the Martian surface, atmosphere, climate and magnetic field. On August 21, 1993, during the interplanetary cruise phase, communication with the spacecraft was lost, three days prior to the probe's orbital insertion. Attempts to re-establish communications with the spacecraft were unsuccessful.

<i>Clementine</i> (spacecraft) American space project

Clementine was a joint space project between the Ballistic Missile Defense Organization and NASA, launched on January 25, 1994. Its objective was to test sensors and spacecraft components in long-term exposure to space and to make scientific observations of both the Moon and the near-Earth asteroid 1620 Geographos.

Delta-v, symbolized as and pronounced, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.

<span class="mw-page-title-main">STS-82</span> 1997 American crewed spaceflight to the Hubble Space Telescope

STS-82 was the 22nd flight of the Space Shuttle Discovery and the 82nd mission of the Space Shuttle program. It was NASA's second mission to service the Hubble Space Telescope, during which Discovery's crew repaired and upgraded the telescope's scientific instruments, increasing its research capabilities. Discovery launched from Kennedy Space Center, Florida, on February 11, 1997, returning to Earth on February 21, 1997, at Kennedy Space Center.

<span class="mw-page-title-main">Kepler space telescope</span> NASA space telescope for exoplanetology (2009–2018)

The Kepler space telescope is a defunct space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018.

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft or celestial body. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted. For spacecraft in a halo orbit around a Lagrange point, station-keeping is even more fundamental, as such an orbit is unstable; without an active control with thruster burns, the smallest deviation in position or velocity would result in the spacecraft leaving orbit completely.

<span class="mw-page-title-main">Reaction control system</span> Spacecraft thrusters used to provide attitude control and translation

A reaction control system (RCS) is a spacecraft system that uses thrusters to provide attitude control and translation. Alternatively, reaction wheels can be used for attitude control. Use of diverted engine thrust to provide stable attitude control of a short-or-vertical takeoff and landing aircraft below conventional winged flight speeds, such as with the Harrier "jump jet", may also be referred to as a reaction control system.

<span class="mw-page-title-main">ROSAT</span> Satellite X-ray telescope

ROSAT was a German Aerospace Center-led satellite X-ray telescope, with instruments built by West Germany, the United Kingdom and the United States. It was launched on 1 June 1990, on a Delta II rocket from Cape Canaveral, on what was initially designed as an 18-month mission, with provision for up to five years of operation. ROSAT operated for over eight years, finally shutting down on 12 February 1999.

<span class="mw-page-title-main">Spacecraft flight dynamics</span> Application of mechanical dynamics to model the flight of space vehicles

Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.

A control moment gyroscope (CMG) is an attitude control device generally used in spacecraft attitude control systems. A CMG consists of a spinning rotor and one or more motorized gimbals that tilt the rotor’s angular momentum. As the rotor tilts, the changing angular momentum causes a gyroscopic torque that rotates the spacecraft.

<span class="mw-page-title-main">Wide Field Infrared Explorer</span> NASA satellite of the Explorer program

Wide-field Infrared Explorer was a NASA satellite launched on 5 March 1999, on the Pegasus XL launch vehicle into polar orbit between 409 and 426 km above the surface of Earth. WIRE was intended to be a four-month infrared survey of the entire sky at 21-27 μm and 9-15 μm, specifically focusing on starburst galaxies and luminous protogalaxies.

<span class="mw-page-title-main">Astronomical Netherlands Satellite</span> Space-based X-ray and ultraviolet telescope

The Astronomical Netherlands Satellite was a space-based X-ray and ultraviolet telescope. It was launched into Earth orbit on 30 August 1974 at 14:07:39 UTC in a Scout rocket from Vandenberg Air Force Base, United States. The mission ran for 20 months until June 1976, and was jointly funded by the Netherlands Institute for Space Research (NIVR) and NASA. ANS was the first Dutch satellite, and the Main Belt asteroid 9996 ANS was named after it. ANS reentered Earth's atmosphere on June 14, 1977.

The slew of a spacecraft is its orientation in reference to a plane or fixed position such as Earth, the Sun, another celestial body or other point in space. When moving to assume such an orientation, the spacecraft is slewing.

<i>Hitomi</i> (satellite) Failed Japanese X-ray astronomy satellite

Hitomi, also known as ASTRO-H and New X-ray Telescope (NeXT), was an X-ray astronomy satellite commissioned by the Japan Aerospace Exploration Agency (JAXA) for studying extremely energetic processes in the Universe. The space observatory was designed to extend the research conducted by the Advanced Satellite for Cosmology and Astrophysics (ASCA) by investigating the hard X-ray band above 10 keV. The satellite was originally called New X-ray Telescope; at the time of launch it was called ASTRO-H. After it was placed in orbit and its solar panels deployed, it was renamed Hitomi. The spacecraft was launched on 17 February 2016 and contact was lost on 26 March 2016, due to multiple incidents with the attitude control system leading to an uncontrolled spin rate and breakup of structurally weak elements.

A magnetorquer or magnetic torquer is a satellite system for attitude control, detumbling, and stabilization built from electromagnetic coils. The magnetorquer creates a magnetic dipole that interfaces with an ambient magnetic field, usually Earth's, so that the counter-forces produced provide useful torque.

Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

<span class="mw-page-title-main">Zero-propellant maneuver</span>

A zero-propellant maneuver (ZPM) is an optimal attitude trajectory used to perform spacecraft rotational control without the need to use thrusters. ZPMs are designed for spacecraft that use momentum storage actuators. Spacecraft ZPMs are used to perform large angle rotations or rate damping (detumbling) without saturating momentum actuators, and momentum dumping without thrusters.

This glossary of aerospace engineering terms pertains specifically to aerospace engineering, its sub-disciplines, and related fields including aviation and aeronautics. For a broad overview of engineering, see glossary of engineering.

<span class="mw-page-title-main">Spacecraft bus (James Webb Space Telescope)</span> Part of the James Webb Space Telescope

The spacecraft bus is a carbon fibre box that houses systems of the telescope and so is the primary support element of the James Webb Space Telescope, launched on 25 December 2021. It hosts a multitude of computing, communication, propulsion, and structural components. The other three elements of the JWST are the Optical Telescope Element (OTE), the Integrated Science Instrument Module (ISIM), and the sunshield. Region 3 of ISIM is also inside the spacecraft bus. Region 3 includes the ISIM Command and Data Handling subsystem and the Mid-Infrared Instrument (MIRI) cryocooler.

References

  1. "Reaction/Momentum Wheel". NASA. Retrieved 15 June 2018.
  2. 1 2 3 4 5 Wiley J Larson and James R Wertz (January 1999). Space Mission Analysis and Design (3 ed.). Microcosm Press. ISBN   1-881883-10-8.
  3. "Attitude Control". Universität Stuttgart Institut für Raumfahrtsysteme. Retrieved 12 August 2016.
  4. 1 2 mars.nasa.gov. "Control Devices". mars.nasa.gov. Retrieved 2024-01-12.
  5. "israels-moon-mission-launched-successfully". Globes. 22 February 2019.
  6. "spaceil-conducts-another-successful-maneuver". Globes. 19 March 2019.
  7. Spacecraft Gyroscopes And Reaction Wheels. You Can Never Have Enough | Fraser Cain | Universe Today | Aug, 2019
  8. "crowdfunded-spacecraft-lightsail-2-prepares-to-go-sailing-on-sunlight". 21 June 2019.
  9. W. Bialke, E. Hansell "A Newly Discovered Branch of the Fault Tree Explaining Systemic Reaction Wheel Failures And Anomalies", 2017
  10. 1 2 "Team Hubble: Servicing Missions -- Servicing Mission 3B". Astronauts replaced one of the four Reaction Wheel Assemblies that make up Hubble's Pointing Control System.
  11. 1 2 Carré, D. J.; Bertrand, P. A. (1999). "Analysis of Hubble Space Telescope Reaction Wheel Lubricant". Journal of Spacecraft and Rockets. 36 (1): 109–113. Bibcode:1999JSpRo..36..109C. doi:10.2514/2.3422.
  12. "Gyroscopes". ESA. Retrieved 8 April 2016.
  13. "Hayabusa". NASA. Archived from the original on June 1, 2013. Retrieved May 15, 2013.
  14. Mike Wall (May 15, 2013). "Planet-Hunting Kepler Spacecraft Suffers Major Failure, NASA Says". Space.com . Retrieved May 15, 2013.
  15. "NASA Ends Attempts to Fully Recover Kepler Spacecraft, Potential New Missions Considered". August 15, 2013. Archived from the original on September 7, 2018. Retrieved August 15, 2013.
  16. Overbye, Dennis (August 15, 2013). "NASA's Kepler Mended, but May Never Fully Recover". New York Times . Retrieved August 15, 2013.
  17. Wall, Mike (August 15, 2013). "Planet-Hunting Days of NASA's Kepler Spacecraft Likely Over". Space.com . Retrieved August 15, 2013.
  18. "Kepler: NASA retires prolific telescope from planet-hunting duties". BBC News. 16 August 2013.
  19. Hunter, Roger. "Kepler Mission Manager Update: Pointing Test Results". NASA.gov. NASA. Retrieved 24 September 2013.
  20. Sobeck, Charlie (May 16, 2014). Johnson, Michele (ed.). "Kepler Mission Manager Update: K2 Has Been Approved!". nasa.gov. NASA Official: Brian Dunbar; Image credit(s): NASA Ames/W. Stenzel. NASA. Archived from the original on May 17, 2014. Retrieved May 17, 2014.
  21. Chou, Felicia (2018-10-30). "NASA Retires Kepler Space Telescope, Passes Planet-Hunting Torch". NASA. Retrieved 2018-11-16.
  22. 1 2 Cook, Jia-Rui C. (August 18, 2012). "Dawn Engineers Assess Reaction Wheel". NASA /Jet Propulsion Laboratory. Archived from the original on March 15, 2015. Retrieved January 22, 2015.
  23. NASA's NASA's Swift Observatory Returns to Science NASA News, February 18, 2022, NASA. Retrieved April 16, 2023