SCISAT-1

Last updated
SCISAT-1
Mission typeRemote sensing
Operator Canadian Space Agency (CSA)
COSPAR ID 2003-036A
SATCAT no. 27858 OOjs UI icon edit-ltr-progressive.svg
Website www.asc-csa.gc.ca/eng/satellites/scisat/default.asp
Mission durationPlanned: 2 years (minimum) [1]
Elapsed: 18 years, 9 months, 7 days
Spacecraft properties
Manufacturer Bristol Aerospace [1]
Launch mass260 kg (570 lb) [1]
Start of mission
Launch date13 August 2003, 02:09:33 (2003-08-13UTC02:09:33Z) UTC [2]
Rocket Pegasus-XL F35
Launch site Vandenberg Runway 12/30
Contractor Orbital
Orbital parameters
Reference system Geocentric
Regime Low Earth
Perigee altitude 642 km (399 mi) [1]
Apogee altitude 654 km (406 mi) [1]
Inclination 73.9 degrees [1]
Period 97.7 minutes [3]
Epoch 12 August 2003, 22:10:00 UTC [3]
 

SCISAT-1 is a Canadian satellite designed to make observations of the Earth's atmosphere. Its main instruments are an optical Fourier transform infrared spectrometer, the ACE-FTS Instrument, and an ultraviolet spectrophotometer, MAESTRO. These devices record spectra of the Sun, as sunlight passes through the Earth's atmosphere, making analyses of the chemical elements of the atmosphere possible.

Contents

Design and construction

SCISAT is a relatively small satellite weighing 150 kg (330 lb). It is partly drum shaped and measures about 1.5 metres by 1.5 metres. The Canadian Space Agency (CSA) coordinated its design, launch and use. The main contractors were Bristol Aerospace of Winnipeg, Manitoba, who were prime contractor for the bus, and ABB Bomem Inc. of Quebec City, Quebec who developed the ACE-FTS instrument. The total development cost of SCISAT, as estimated [4] by the CSA in 2003, was about CDN$60M. As of 18 years after launch, the satellite and its instruments are still operating.

ACE-FTS

The ACE-FTS instrument is the main payload of the SCISAT-1 spacecraft. The primary scientific goal of the Atmospheric Chemistry Experiment (ACE) is to measure and understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere. The principle of ACE measurement is the solar occultation technique. A high inclination (74 degrees), low Earth orbit 650 km (400 mi) will provide ACE coverage of tropical, mid-latitudes and polar regions.

The spectrometer is an adapted version of the classical Michelson interferometer using an optimized optical layout. Its highly folded double-pass optical design results in a very high performance instrument with a compact size. A signal-to-noise ratio (SNR) better than 100 is achieved, with a field-of-view (FOV) of 1.25 mrad and an aperture diameter of 100 mm (4"). A semiconductor laser is used as the metrology source of the interferometer sub-system.

The auxiliary Visible/Near-infrared Imager (VNI) monitors aerosols based on the extinction of solar radiation using two filtered detectors at 0.525 and 1.02 micrometres. The instrument also includes a Suntracker mechanism providing fine pointing toward the radiometric center of the Sun with stability better than 3 μrad. The ACE-FTS instrument was launched on August 12, 2003.

ABB was the prime contractor for the design and manufacturing of the ACE-FTS instrument.

MAESTRO

The Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument aboard SCISAT-1 measures the vertical distribution of ozone, nitrogen dioxide, water vapour, and aerosols in the Earth's atmosphere. [5] MAESTRO consists of a UV-VIS-NIR spectrophotometer that measures the 285-1030 nm spectral region. [6]

Orbit

SCISAT passes through the Earth's shadow 15 times per day, profiting from the occultation of the Sun to make a spectrographic analysis of the structure and chemistry of those parts of the upper atmosphere that are too high to be reached by balloons and airplanes and too low to be visited by orbiting satellites. This kind of analysis can help understand the depletion of the ozone layer and other upper atmosphere phenomena.

SCISAT was placed in low Earth orbit, or LEO, by a Pegasus rocket launched from a NASA Lockheed L-1011 carrier aircraft on August 12, 2003 from Vandenberg Air Force Base. Expected to operate for two to five years, it was still operational in 2018. Current information may be obtained from the ACE Mission Information for Public Data Release report. [7]

The University of Waterloo, York University, the University of Toronto, and several other Canadian universities collaborated in the design of the experiments, and in several aspects of the testing of the satellite.

Related Research Articles

Envisat ESA Earth observation satellite (2002–2012)

Envisat is a large inactive Earth-observing satellite which is still in orbit and now considered as space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

STS-48 1991 American crewed spaceflight to deploy the Upper Atmospheric Research Satellite

STS-48 was a Space Shuttle mission that launched on 12 September 1991, from Kennedy Space Center, Florida. The orbiter was Space ShuttleDiscovery. The primary payload was the Upper Atmosphere Research Satellite (UARS). The mission landed on 18 September at 12:38 a.m. EDT at Edwards Air Force Base on runway 22. The mission was completed in 81 revolutions of the Earth and traveled 3,530,369 km (2,193,670 mi). The 5 astronauts carried out a number of experiments and deployed several satellites. The total launch mass was 108,890 kg (240,060 lb) and the landing mass was 87,440 kg (192,770 lb).

Upper Atmosphere Research Satellite NASA-operated orbital obserbatory

The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.

Total Ozone Mapping Spectrometer

The Total Ozone Mapping Spectrometer (TOMS) was a NASA satellite instrument, specifically a spectrometer, for measuring the ozone layer. Of the five TOMS instruments which were built, four entered successful orbit. The satellites carrying TOMS instruments were:

Space Dynamics Laboratory Nonprofit government contractor owned by Utah State University

Space Dynamics Laboratory (SDL) is a nonprofit government contractor owned by Utah State University. SDL was formed in 1982 from the merger of Utah State University's Electro Dynamics Laboratories and the University of Utah's Upper Air Research Laboratory. The corporation has been responsible for the design, fabrication, and operation of sensors on over 430 payloads ranging from aircraft and rocket-borne experiments to space shuttle experiments and satellite-based sensor systems. SDL is the Missile Defense Agency's University Affiliated Research Center (UARC) and one of 14 UARCs in the nation. SDL provides sensor systems and supporting technologies to address challenges for the United States government. SDL designs and develops electro-optical sensors, builds small satellites, provides calibration services, and creates real-time data reconnaissance systems.

Atmospheric chemistry observational databases

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

SBUV/2

The Solar Backscatter Ultraviolet Radiometer, or SBUV/2, is a series of operational remote sensors on NOAA weather satellites in Sun-synchronous orbits which have been providing global measurements of stratospheric total ozone, as well as ozone profiles, since March 1985. The SBUV/2 instruments were developed from the SBUV experiment flown on the Nimbus-7 spacecraft which improved on the design of the original BUV instrument on Nimbus-4. These are nadir viewing radiometric instruments operating at mid to near UV wavelengths. SBUV/2 data sets overlap with data from SBUV and TOMS instruments on the Nimbus-7 spacecraft. These extensive data sets measure the density and vertical distribution of ozone in the Earth's atmosphere from six to 30 miles.

The Stratospheric Aerosol and Gas Experiment (SAGE) is a series of remote sensing satellite instruments used to study the chemical composition of Earth's atmosphere. Specifically, SAGE has been used to study the Earth's ozone layer and aerosols at the troposphere through the stratosphere. The SAGE instruments use solar occultation measurement technique to determine chemical concentrations in the atmosphere. Solar occultation measurement technique measures sunlight through the atmosphere and ratios that measurement with a sunlight measurement without atmospheric attenuation. This is achieved by observing sunrises and sunsets during a satellite orbit. Physically, the SAGE instruments measure ultraviolet/visible energy and this is converted via algorithms to determine chemical concentrations. SAGE data has been used to study the atmospheres aerosols, ozone, water vapor, and other trace gases.

Paul O. Wennberg is the R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering at the California Institute of Technology (Caltech). He is the director of the Ronald and Maxine Linde Center for Global Environmental Science. He is chair of the Total Carbon Column Observing Network and a founding member of the Orbiting Carbon Observatory project, which created NASA's first spacecraft for analysis of carbon dioxide in the atmosphere. He is also the principal investigator for the Mars Atmospheric Trace Molecule Occultation Spectrometer (MATMOS) to investigate trace gases in Mars's atmosphere.

Greenhouse gas monitoring Measurement of greenhouse gas emissions and levels

Greenhouse gas monitoring is the direct measurement of greenhouse gas emissions and levels. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry. Methane and nitrous oxide are measured by other instruments. Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and networks of ground stations such as the Integrated Carbon Observation System.

ADEOS I Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

Joint Polar Satellite System Constellation of American meteorology satellites

The Joint Polar Satellite System (JPSS) is the latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites. JPSS will provide the global environmental data used in numerical weather prediction models for forecasts, and scientific data used for climate monitoring. JPSS will aid in fulfilling the mission of the U.S. National Oceanic and Atmospheric Administration (NOAA), an agency of the Department of Commerce. Data and imagery obtained from the JPSS will increase timeliness and accuracy of public warnings and forecasts of climate and weather events, thus reducing the potential loss of human life and property and advancing the national economy. The JPSS is developed by the National Aeronautics and Space Administration (NASA) for the National Oceanic and Atmospheric Administration (NOAA), who is responsible for operation of JPSS. Three to five satellites are planned for the JPSS constellation of satellites. JPSS satellites will be flown, and the scientific data from JPSS will be processed, by the JPSS – Common Ground System (JPSS-CGS).

SAGE III on ISS

SAGE III on ISS is the fourth generation of a series of NASA Earth-observing instruments, known as the Stratospheric Aerosol and Gas Experiment. The first SAGE III instrument was launched on a Russian Meteor-3M satellite. The recently revised SAGE III was mounted to the International Space Station where it uses the unique vantage point of ISS to make long-term measurements of ozone, aerosols, water vapor, and other gases in Earth's atmosphere.

OSIRIS is an instrument that measures vertical profiles of spectrally dispersed, limb scattered sunlight from the upper troposphere into the lower mesosphere. OSIRIS is one of two instruments on the Odin satellite, launched February, 2001 into a sun-synchronous, 6 pm/6 am local time orbit at 600 km. This restricts OSIRIS sunlit observations to the Northern hemisphere in May, June, July August and the Southern hemisphere in November, December, January and February. Global coverage from 82°S to 82°N occurs on the months adjoining the equinoxes. OSIRIS measurements began November, 2001 and continue to the present.

Meteor-3M No.1

Meteor-3M No.1 was the first and only of the Meteor-3M series polar-orbiting weather satellites. It was launched on 10 December 2001 at 17:18:57 UTC from the Baikonur Cosmodrome in Kazakhstan. The satellite is in a sun-synchronous orbit with an ascending node time of about 9AM.

Space-based measurements of carbon dioxide

Space-based measurements of carbon dioxide are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure CO2 was the Interferometric Monitor for Greenhouse Gases (IMG) on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision satellites. Different instrument designs may reflect different primary missions.

JPSS-2

JPSS-2, or Joint Polar Satellite System-2, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. JPSS-2 is to be launched in October 2022 and join NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day.

NOAA-20

NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes ahead of Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This will give meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages.

Explorer 60 NASA satellite of the Explorer program

Explorer 60, also called as SAGE and was the second of the Applications Explorer Missions (AEM), AEM-B, was a NASA scientific satellite launched on 18 February 1979, from Wallops Flight Facility (WFF) by a Scout D-1 launch vehicle.

Moustafa T. Chahine was an atmospheric scientist and an international leader in atmospheric remote sensing using satellite observations. He was the Science Team Leader for the Atmospheric Infrared Sounder on NASA's Earth Observing System Aqua satellite, and the Chairman of the Global Energy and Water Exchanges (GEWEX) Science Steering Group of the World Climate Research Program (WCRP).

References

  1. 1 2 3 4 5 6 "SCISAT". Encyclopedia Astronautica. Archived from the original on 17 October 2012. Retrieved 13 November 2012.
  2. McDowell, Jonathan. "Launch Log". Jonathan's Space Report . Retrieved 13 November 2012.
  3. 1 2 "NASA - NSSDCA - Spacecraft - Trajectory Details". nssdc.gsfc.nasa.gov. Retrieved 2018-05-01.
  4. Emerson, David. "Canadian Space Agency Departmental Performance Report For the Period Ending March 31, 2004". Treasury Board of Canada Secretariat. Archived from the original on 2004-11-26. Table entry "Current Estimated Total Cost" in Section 8.1.8.
  5. Archived October 2, 2013, at the Wayback Machine
  6. "MAESTRO - Atmospheric Chemistry Experiment". Ace.uwaterloo.ca. Archived from the original on 2013-10-04. Retrieved 2013-10-01.
  7. "Atmospheric Chemistry Experiment : ACE Mission Information for Public Date Release" (PDF). Ace.uwaterloo.ca. Archived from the original (PDF) on 2013-10-04. Retrieved 2013-10-01.