A magnetorquer or magnetic torquer (also known as a torque rod) is a satellite system for attitude control, detumbling, and stabilization built from electromagnetic coils. The magnetorquer creates a magnetic dipole that interfaces with an ambient magnetic field, usually Earth's, so that the counter-forces produced provide useful torque.
Magnetorquers are sets of electromagnets arranged to yield a rotationally asymmetric (anisotropic) magnetic field over an extended area. That field is controlled by switching current flow through the coils on or off, usually under computerized feedback control. The magnets themselves are mechanically anchored to the craft, so that any magnetic force they exert on the surrounding magnetic field will lead to a magnetic reverse force and result in mechanical torque about the vessel's center of gravity. This makes it possible to freely pivot the craft around in a known local gradient of the magnetic field by only using electrical energy.
The magnetic dipole generated by the magnetorquer is expressed by the formula
where n is the number of turns of the wire, I is the current provided, and A is the vector area of the coil. The dipole interacts with the magnetic field generating a torque
where m is the magnetic dipole vector, B the magnetic field vector (for a spacecraft it is the Earth magnetic field vector), and τ is the generated torque vector.
The construction of a magnetorquer is based on the realization of a coil with a defined area and number of turns according to the required performances. However, there are different ways to obtain the coil; thus, depending on the construction strategy, it is possible to find three types of magnetorquer, apparently very different from each other but based on the same concept: [1]
Typically three coils are used, although reduced configurations of two or even one magnet can suffice where full attitude control is not needed or external forces like asymmetric drag allow underactuated control. The three coil assembly usually takes the form of three perpendicular coils, because this setup equalizes the rotational symmetry of the fields which can be generated; no matter how the external field and the craft are placed with respect to each other, approximately the same torque can always be generated simply by using different amounts of current on the three different coils.
As long as current is passing through the coils and the spacecraft has not yet been stabilized in a fixed orientation with respect to the external field, the craft's spinning will continue.[ citation needed ]
Very small satellites may use permanent magnets instead of coils. [ citation needed ]
Magnetorquers are lightweight, reliable, and energy-efficient. Unlike thrusters, they do not require expendable propellant, so they could in theory work indefinitely as long as sufficient power is available to match the resistive load of the coils. In Earth orbit, sunlight is one such practically inexhaustible energy source, using solar panels.
Another advantage over momentum wheels and control moment gyroscopes is the absence of moving parts, hence significantly higher reliability.
The main disadvantage of magnetorquers is that very high magnetic flux densities are needed if large craft have to be turned quickly. This either necessitates a very high current in the coils, or much higher ambient flux densities than are available in Earth orbit. Consequently, the torques provided are very limited and only serve to accelerate or decelerate the change in a spacecraft's attitude by small amounts. Over time, active control can produce fast spinning even on Earth, but for accurate attitude control and stabilization the torques provided are often insufficient. To overcome this, magnetorquer are often combined with reaction wheels.
A broader disadvantage is the dependence on Earth's magnetic field strength, making this approach unsuitable for deep space missions, and also more suitable for low Earth orbits as opposed to higher ones such as geosynchronous. The dependence on the highly variable intensity of Earth's magnetic field is problematic because then the attitude control problem becomes highly nonlinear. It is also impossible to control attitude in all three axes even if the full three coils are used, because the torque can be generated only perpendicular to the Earth's magnetic field vector. [3] [4]
Any spinning satellite made of a conductive material will lose rotational momentum in Earth's magnetic field due to generation of eddy currents in its body and the corresponding braking force proportional to its spin rate. [5] Aerodynamic friction losses can also play a part. This means that the magnetorquer will have to be continuously operated, and at a power level which is enough to counter the resistive forces present. This is not always possible within the energy constraints of the vessel.
The Michigan Exploration Laboratory (MXL) suspects that the M-Cubed CubeSat, a joint project run by MXL and JPL, became magnetically conjoined to Explorer-1 Prime, a second CubeSat released at the same time, via strong onboard magnets used for passive attitude control, after deploying on October 28, 2011. [6] This is the first non-destructive latching of two satellites. [7]
In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:
A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
A reaction wheel (RW) is an electric motor attached to a flywheel, which, when its rotation speed is changed, causes a counter-rotation proportionately through conservation of angular momentum. A reaction wheel can rotate only around its center of mass; it is not capable of moving from one place to another.
A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integer number of AC cycles. Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field. A synchronous motor is termed doubly fed if it uses independently-excited multiphase AC electromagnets for both rotor and stator.
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.
Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized, the magnet will stay magnetized indefinitely. To demagnetize it requires heat or a magnetic field in the opposite direction. This is the effect that provides the element of memory in a hard disk drive.
In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. It is represented by a pseudovector M. Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics.
The Canadian Advanced Nanospace eXperiment (CanX) program is a Canadian CubeSat nanosatellite program operated by the University of Toronto Institute for Aerospace Studies, Space Flight Laboratory (UTIAS/SFL). The program's objectives are to involve graduate students in the process of spaceflight development, and to provide low-cost access to space for scientific research and the testing of nanoscale devices. The CanX projects include CanX-1, CanX-2, the BRIght Target Explorer (BRITE), and CanX-4&5.
Spacecraft magnetometers are magnetometers used aboard spacecraft and satellites, mostly for scientific investigations, plus attitude sensing. Magnetometers are among the most widely used scientific instruments in exploratory and observation satellites. These instruments were instrumental in mapping the Van Allen radiation belts around Earth after its discovery by Explorer 1, and have detailed the magnetic fields of the Earth, Moon, Sun, Mars, Venus and other planets and moons. There are ongoing missions using magnetometers, including attempts to define the shape and activity of Saturn's core.
ESSA-9, also known as TOS-G, was a meteorological satellite. Its name was derived from that of its oversight agency, the Environmental Science Services Administration (ESSA). ESSA-9 replaced the ESSA-7 satellite.
Chasqui I is a one-kilogram nanosatellite developed by students at Peru's National University of Engineering (UNI) based on CubeSat technology. Developed with assistance from the Russian Southwest State University (SWSU), Kursk, it was part of an educational project to acquire the experience and ability in developing satellites.
Magnets exert forces and torques on each other through the interaction of their magnetic fields. The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.
Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.
M-Cubed is a miniaturized satellite built by students at the University of Michigan in a joint project run by the Michigan Exploration Laboratory (MXL) and Jet Propulsion Laboratory (JPL). It is an example of the popular CubeSat design for amateur satellites. It was launched from Vandenberg Air Force Base on 28 October 2011 atop a Delta II rocket. M-Cubed was launched as a secondary payload to the Suomi NPP satellite, along with AubieSat-1, DICE-1, DICE-2, Explorer-1 Prime and RAX-2.
CubeSail is a proposed nanosatellite project by the Surrey Space Centre (SSC) in England. The spacecraft is to be a 3U CubeSat propelled by a 25 m²solar sail. The project is financed and technically supported by aerospace manufacturers Astrium and Surrey Satellite Technology. It is designed for operation in low Earth orbit, serving as an atmospheric drag brake to facilitate the removal of satellite debris.
TIROS 5 was a spin-stabilized meteorological satellite. It was the fifth in a series of Television Infrared Observation Satellites.
TIROS 6 was a spin-stabilized meteorological satellite. It was the sixth in a series of Television Infrared Observation Satellites.
TIROS-10 was a spin-stabilized meteorological satellite. It was the tenth and last in a series of Television Infrared Observation Satellites.
Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.