Manufacturer | |||
---|---|---|---|
Operator | European Space Agency | ||
Applications | Land and sea monitoring, natural disasters mapping, sea ice observations, ships detection | ||
Specifications | |||
Spacecraft type | Satellite | ||
Bus | AstroBus-L | ||
Constellation | 3 | ||
Launch mass | 1,140 kg (2,513 lb) [2] | ||
Dry mass | 1,016 kg (2,240 lb) [2] | ||
Dimensions | 3.4 × 1.8 × 2.35 m (11.2 × 5.9 × 7.7 ft) [2] | ||
Power | 1,700 W [3] | ||
Design life | 7 years | ||
Production | |||
Status | Active | ||
On order | 1 | ||
Built | 3 | ||
Launched | 3 | ||
Operational | 3 | ||
Maiden launch | Sentinel-2A 23 June 2015 | ||
Last launch | Sentinel-2C 5 September 2024 | ||
|
Sentinel-2 is an Earth observation mission from the Copernicus Programme that acquires optical imagery at high spatial resolution (10 m to 60 m) over land and coastal waters. The mission's Sentinel-2A and Sentinel-2B satellites were joined in orbit in 2024 by a third, Sentinel-2C, and in the future by Sentinel-2D, eventually replacing the A and B satellites, respectively. [4]
The mission supports services and applications such as agricultural monitoring, emergencies management, land cover classification, and water quality.
Sentinel-2 has been developed and is being operated by the European Space Agency. The satellites were manufactured by a consortium led by Airbus Defence and Space in Friedrichshafen, Germany.
The Sentinel-2 mission includes:
To achieve frequent revisits and high mission availability, two identical Sentinel-2 satellites (Sentinel-2A and Sentinel-2B) operate together. The satellites are phased 180 degrees from each other on the same orbit. This allows for what would be a 10-day revisit cycle to be completed in 5 days. [5] The 290 km swath is created by the VNIR and SWIR, which are each made of 12 detectors that are lined in two offset rows. [6]
The orbits are Sun-synchronous at 786 km (488 mi) altitude, 14.3 revolutions per day, with a 10:30 a.m. descending node. This local time was selected as a compromise between minimizing cloud cover and ensuring suitable Sun illumination. It is close to the Landsat local time and matches SPOT 's, allowing the combination of Sentinel-2 data with historical images to build long-term time series.
The launch of the first satellite, Sentinel-2A, occurred 23 June 2015 at 01:52 UTC on a Vega launch vehicle. [7]
Sentinel-2B was launched on 7 March 2017 at 01:49 UTC, [8] also aboard a Vega rocket. [2]
Sentinel-2C was launched on 5 September 2024 on the last [9] Vega launch vehicle. [10]
The Sentinel-2 satellites each carry a single instrument, the Multi-Spectral Instrument (MSI), which has 13 spectral channels in the visible/near infrared (VNIR) and short wave infrared spectral range (SWIR). Within the 13 bands, the 10 m (33 ft) spatial resolution allows for continued collaboration with the SPOT-5 and Landsat-8 missions, with the core focus being land classification. [11]
Designed and built by Airbus Defense and Space in France, the MSI uses a push-broom concept and its design was driven by the large 290 km (180 mi) swath requirements together with the high geometrical and spectral performance required of the measurements. [12] It has a 150 mm (6 in) aperture and a three-mirror anastigmat design with a focal length of about 600 mm (24 in); the instantaneous field of view is about 21° by 3.5°. [13] The mirrors are rectangular and made of silicon carbide, a similar technology to those on the Gaia astrometry mission. The MSI system also employs a shutter mechanism preventing direct illumination of the instrument by the sun. This mechanism is also used in the calibration of the instrument. [14] Out of the existing civic optical earth observation missions, Sentinel-2 is the first acquiring three bands in the red edge. [11] MSI has 12-bit radiometric resolution (bit depth) with brightness intensity ranging from 0–4095. [15]
Sentinel-2 bands | Sentinel-2A | Sentinel-2B | |||
---|---|---|---|---|---|
Central wavelength (nm) | Bandwidth (nm) | Central wavelength (nm) | Bandwidth (nm) | Spatial resolution (m) | |
Band 1 – Coastal aerosol | 442.7 | 21 | 442.2 | 21 | 60 |
Band 2 – Blue | 492.4 | 66 | 492.1 | 66 | 10 |
Band 3 – Green | 559.8 | 36 | 559.0 | 36 | 10 |
Band 4 – Red | 664.6 | 31 | 664.9 | 31 | 10 |
Band 5 – Vegetation red edge | 704.1 | 15 | 703.8 | 16 | 20 |
Band 6 – Vegetation red edge | 740.5 | 15 | 739.1 | 15 | 20 |
Band 7 – Vegetation red edge | 782.8 | 20 | 779.7 | 20 | 20 |
Band 8 – NIR | 832.8 | 106 | 832.9 | 106 | 10 |
Band 8A – Narrow NIR | 864.7 | 21 | 864.0 | 22 | 20 |
Band 9 – Water vapour | 945.1 | 20 | 943.2 | 21 | 60 |
Band 10 – SWIR – Cirrus | 1373.5 | 31 | 1376.9 | 30 | 60 |
Band 11 – SWIR | 1613.7 | 91 | 1610.4 | 94 | 20 |
Band 12 – SWIR | 2202.4 | 175 | 2185.7 | 185 | 20 |
Due to the layout of the focal plane, spectral bands within the MSI observe the surface at different times and vary between band pairs. [14] These temporal offsets can be used to gain additional information, for example to track propagating natural and human-made features such as clouds, airplanes or ocean waves [17] [18]
Sentinel-2 serves a wide range of applications related to Earth's land and coastal water.
The mission provides information for agricultural and forestry practices and for helping manage food security. Satellite images will be used to determine various plant indices such as leaf area chlorophyll and water content indexes. This is particularly important for effective yield prediction and applications related to Earth's vegetation.
As well as monitoring plant growth, Sentinel-2 is used to map changes in land cover and to monitor the world's forests. It also provides information on pollution in lakes and coastal waters. Images of floods, volcanic eruptions [19] and landslides contribute to disaster mapping and help humanitarian relief efforts.
Examples of applications include:
The Sentinel Monitoring web application offers an easy way to observe and analyse land changes based on archived Sentinel-2 data. [25]
The following two main products are generated by the mission: [26]
Additionally, the following product for expert users is also available:
Envisat is a large Earth-observing satellite which has been inactive since 2012. It is still in orbit and considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.
The Landsat program is the longest-running enterprise for acquisition of satellite imagery of Earth. It is a joint NASA / USGS program. On 23 July 1972, the Earth Resources Technology Satellite was launched. This was eventually renamed to Landsat 1 in 1975. The most recent, Landsat 9, was launched on 27 September 2021.
The Moderate Resolution Imaging Spectroradiometer (MODIS) is a satellite-based sensor used for earth and climate measurements. There are two MODIS sensors in Earth orbit: one on board the Terra satellite, launched by NASA in 1999; and one on board the Aqua satellite, launched in 2002. MODIS has now been replaced by the VIIRS, which first launched in 2011 aboard the Suomi NPP satellite.
Satellite images are images of Earth collected by imaging satellites operated by governments and businesses around the world. Satellite imaging companies sell images by licensing them to governments and businesses such as Apple Maps and Google Maps.
MEdium Resolution Imaging Spectrometer (MERIS) was one of the main instruments on board the European Space Agency (ESA)'s Envisat platform. The sensor was in orbit from 2002 to 2012. ESA formally announced the end of Envisat's mission on 9 May 2012.
Copernicus is the Earth observation component of the European Union Space Programme, managed by the European Commission and implemented in partnership with the EU member states, the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Joint Research Centre (JRC), the European Environment Agency (EEA), the European Maritime Safety Agency (EMSA), Frontex, SatCen and Mercator Océan.
Cartosat-2 was an Earth observation satellite in a Sun-synchronous orbit and the second of the Cartosat series of satellites. The satellite was built, launched and maintained by the Indian Space Research Organisation (ISRO). Weighing around 680 kg at launch, its applications were mainly be towards cartography. It was launched by the Polar Satellite Launch Vehicle PSLV C7 launch vehicle on 10 January 2007.
Sentinel-1 is the first of the Copernicus Programme satellite constellations conducted by the European Space Agency. The mission was originally composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which shared the same orbital plane. Two more satellites, Sentinel-1C and Sentinel-1D are in development. Sentinel-1B was retired following a power supply issue on December 23, 2021, leaving Sentinel-1A the only satellite of the constellation currently operating. Sentinel-1C is currently planned to launch in the final quarter of 2024.
Sentinel-3 is an Earth observation heavy satellite series developed by the European Space Agency as part of the Copernicus Programme. As of 2024, it consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites, Sentinel-3C and Sentinel-3D, will follow in approximately 2025 and 2028 respectively to ensure continuity of the Sentinel-3 mission.
The Earth and Mission Science Division is a group of European Space Agency (ESA) staff mission scientists, contractors, research fellows, young graduates, trainees, and administrative staff working within the Climate Action, Sustainability and Science Department of the Directorate of Earth Observation Programmes. The Division is located at ESA's European Space Research and Technology Centre in Noordwijk, South Holland, The Netherlands.
PROBA-V, or PROBA-Vegetation, is a satellite in the European Space Agency's PROBA series. It was launched in 2013 with a predicted usable lifetime between 2.5 and 5 years.
The Cartosat is a series of Indian optical Earth observation satellites built and operated by the Indian Space Research Organisation (ISRO). The Cartosat series is a part of the Indian Remote Sensing Program. They are used for Earth's resource management, defence services and monitoring.
PRISMA is an Italian Space Agency pre-operational and technology demonstrator mission focused on the development and delivery of hyperspectral products and the qualification of the hyperspectral payload in space.
Sentinel-1A is a European radar imaging satellite launched in 2014. It is the first Sentinel-1 satellite launched as part of the European Union's Copernicus programme. The satellite carries a C-band Synthetic Aperture Radar which will provide images in all light and weather conditions. It analyzes many phenomena occurring on Earth, from detecting and tracking oil spills and mapping sea ice to monitoring movement in land surfaces and mapping changes in the way land is used.
Sentinel-5 Precursor (Sentinel-5P) is an Earth observation satellite developed by ESA as part of the Copernicus Programme to close the gap in continuity of observations between Envisat and Sentinel-5. It was launched in October 2017, and has a design life of 7 years. The TROPOspheric Monitoring Instrument (Tropomi) provides the most detailed methane emissions monitoring available.
Sentinel-2A is a European optical imaging satellite launched in 2015. It is the first Sentinel-2 satellite launched as part of the European Space Agency's Copernicus Programme. The satellite carries a wide swath high-resolution multispectral imager with 13 spectral bands. Its observations support services such as forest monitoring, land cover change-detection, natural disaster management and water quality monitoring.
Sentinel-4 is a European Earth observation mission under development to support the European Union Copernicus Programme. It will focus on monitoring of trace gas concentrations and aerosols in the atmosphere to support operational services covering air-quality near-real time applications, air-quality protocol monitoring, and climate protocol monitoring. The specific objective of Sentinel-4 is to support this with a high revisit time over Europe.
Sentinel-2B is a European optical imaging satellite that was launched on 7 March 2017. It is the second Sentinel-2 satellite launched as part of the European Space Agency's Copernicus Programme, and with its orbit phased 180° against its sister satellite, Sentinel-2A. The satellite carries a wide swath high-resolution multispectral imager with 13 spectral bands. It provides information for agriculture and forestry, among other services, allowing for prediction of crop yields.
The Sentinel-6 Michael Freilich (S6MF) or Sentinel-6A is a radar altimeter satellite developed in partnership between several European and American organizations. It is part of the Jason satellite series and is named after Michael Freilich. S6MF includes synthetic-aperture radar altimetry techniques to improve ocean topography measurements, in addition to rivers and lakes. The spacecraft entered service in mid 2021 and is expected to operate for 5.5 years.
The Hyperspectral Imager for the Coastal Ocean (HICO) was a hyperspectral earth observation sensor that operated on the International Space Station (ISS) from 2009 to 2014. HICO collected hyperspectral satellite imagery of the Earth's surface from the ISS.