Cluster II (spacecraft)

Last updated
Cluster II
Cluster ESA15192620.jpeg
Artist's impression of the Cluster constellation.
Mission type Magnetospheric research
Operator ESA with NASA collaboration
COSPAR ID FM6 (SALSA): 2000-041B
FM7 (SAMBA): 2000-041A
FM5 (RUMBA): 2000-045A
FM8 (TANGO): 2000-045B
SATCAT no. FM6 (SALSA): 26411
FM7 (SAMBA): 26410
FM5 (RUMBA): 26463
FM8 (TANGO): 26464
Website http://sci.esa.int/cluster
Mission durationPlanned: 5 years
Final: 24 years, 1 month and 6 days
Spacecraft properties
Manufacturer Airbus (ex. Dornier) [1]
Launch mass1,200 kg (2,600 lb) [1]
Dry mass550 kg (1,210 lb) [1]
Payload mass71 kg (157 lb) [1]
Dimensions2.9 m × 1.3 m (9.5 ft × 4.3 ft) [1]
Power224 watts [1]
Start of mission
Launch dateFM6: 16 July 2000, 12:39 UTC (2000-07-16UTC12:39Z)
FM7: 16 July 2000, 12:39 UTC (2000-07-16UTC12:39Z)
FM5: 09 August 2000, 11:13 UTC (2000-08-09UTC11:13Z)
FM8: 09 August 2000, 11:13 UTC (2000-08-09UTC11:13Z)
Rocket Soyuz-U/Fregat
Launch site Baikonur 31/6
Contractor Starsem
End of mission
Last contact22 August 2024
Decay dateSalsa: 8 September 2024
Orbital parameters
Reference system Geocentric
Regime Elliptical Orbit
Perigee altitude FM6: 16,118 km (10,015 mi)
FM7: 16,157 km (10,039 mi)
FM5: 16,022 km (9,956 mi)
FM8: 12,902 km (8,017 mi)
Apogee altitude FM6: 116,740 km (72,540 mi)
FM7: 116,654 km (72,485 mi)
FM5: 116,786 km (72,567 mi)
FM8: 119,952 km (74,535 mi)
Inclination FM6: 135 degrees
FM7: 135 degrees
FM5: 138 degrees
FM8: 134 degrees
Period FM6: 3259 minutes
FM7: 3257 minutes
FM5: 3257 minutes
FM8: 3258 minutes
Epoch 13 March 2014, 11:15:07 UTC
Cluster II insignia.png
ESA solar system insignia for Cluster II
  XMM-Newton
INTEGRAL  

Cluster II [2] was a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission was composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission was extended until September 2024. [3] The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

Contents

The first of the satellites of Cluster II to re-enter the atmosphere did so on 8 September 2024. The remaining three are expected to follow in 2025 and 2026. [4] The scientific payload operations of all satellites ended as the first satellite re-entered the atmosphere (other flight operations are still being performed with the remaining flying satellites until the satellites have all re-entered). [5]

Mission overview

The four identical Cluster II satellites studied the impact of the Sun's activity on the Earth's space environment by flying in formation around Earth. For the first time in space history, this mission was able to collect three-dimensional information on how the solar wind interacts with the magnetosphere and affects near-Earth space and its atmosphere, including aurorae.

The spacecraft were cylindrical (2.9 x 1.3 m, see online 3D model) and were spinning at 15 rotations per minute. After launch, their solar cells provided 224 watts power for instruments and communications. Solar array power gradually declined as the mission progressed, due to damage by energetic charged particles, but this was planned for and the power level remains sufficient for science operations. The four spacecraft maneuvered into various tetrahedral formations to study the magnetospheric structure and boundaries. The inter-spacecraft distances could be altered and varied from around 4 to 10,000 km. The propellant for the transfer to the operational orbit, and the maneuvers to vary inter-spacecraft separation distances made up approximately half of the spacecraft's launch weight.

The highly elliptical orbits of the spacecraft initially reached a perigee of around 4 RE (Earth radii, where 1 RE = 6371 km) and an apogee of 19.6 RE. Each orbit took approximately 57 hours to complete. The orbit evolved over time; the line of apsides rotated southwards so that the distance at which the orbit crossed the magnetotail current sheet progressively reduced, and a wide range of dayside magnetopause crossing latitudes were sampled. Gravitational effects imposed a long term cycle of change in the perigee (and apogee) distance, which saw the perigees reduce to a few 100 km in 2011 before beginning to rise again. The orbit plane rotated away from 90 degrees inclination. Orbit modifications by ESOC altered the orbital period to 54 hours. All these changes allowed Cluster to visit a much wider set of important magnetospheric regions than was possible for the initial 2-year mission, improving the scientific breadth of the mission.

The European Space Operations Centre (ESOC) acquired telemetry and distributed to the online data centers the science data from the spacecraft. The Joint Science Operations Centre (JSOC) at Rutherford Appleton Laboratory in the UK coordinated scientific planning and in collaboration with the instrument teams provided merged instrument commanding requests to ESOC.

The Cluster Science Archive is the ESA long term archive of the Cluster and Double Star science missions. Since 1 November 2014, it is the sole public access point to the Cluster mission scientific data and supporting datasets. The Double Star data are publicly available via this archive. The Cluster Science Archive is located alongside all the other ESA science archives at the European Space Astronomy Center, located near Madrid, Spain. From February 2006 to October 2014, the Cluster data could be accessed via the Cluster Active Archive.

History

The Cluster mission was proposed to ESA in 1982 and approved in 1986, along with the Solar and Heliospheric Observatory (SOHO), and together these two missions constituted the Solar Terrestrial Physics "cornerstone" of ESA's Horizon 2000 missions programme. Though the original Cluster spacecraft were completed in 1995, the explosion of the Ariane 5 rocket carrying the satellites in 1996 delayed the mission by four years while new instruments and spacecraft were built.

On July 16, 2000, a Soyuz-Fregat rocket from the Baikonur Cosmodrome launched two of the replacement Cluster II spacecraft, (Salsa and Samba) into a parking orbit from where they maneuvered under their own power into a 19,000 by 119,000 kilometre orbit with a period of 57 hours. Three weeks later on August 9, 2000, another Soyuz-Fregat rocket lifted the remaining two spacecraft (Rumba and Tango) into similar orbits. Spacecraft 1, Rumba, was also known as the Phoenix spacecraft, since it is largely built from spare parts left over after the failure of the original mission. After commissioning of the payload, the first scientific measurements were made on February 1, 2001.

The European Space Agency ran a competition to name the satellites across all of the ESA member states. [6] Ray Cotton, from the United Kingdom, won the competition with the names Rumba, Tango, Salsa and Samba. [7] Ray's town of residence, Bristol, was awarded with scale models of the satellites in recognition of the winning entry, [8] [9] as well as the city's connection with the satellites. However, after many years of being stored away, they were finally given a home at the Rutherford Appleton Laboratory.

Originally planned to last until the end of 2003, the mission was extended several times. The first extension took the mission from 2004 until 2005, and the second from 2005 to June 2009. The mission was ultimately extended until September 2024, when the scientific payload operations on the satellites ended. [3] The ultimate end of the Cluster project (especially the Cluster II satellites) will happen in 2026 as the last satellite enters the atmosphere and is destroyed. [5]

Scientific objectives

Previous single and two-spacecraft missions were not capable of providing the data required to accurately study the boundaries of the magnetosphere. Because the plasma comprising the magnetosphere cannot be viewed using remote sensing techniques, satellites must be used to measure it in-situ. Four spacecraft allowed scientists make the 3D, time-resolved measurements needed to create a realistic picture of the complex plasma interactions occurring between regions of the magnetosphere and between the magnetosphere and the solar wind.

Each satellite carried a scientific payload of 11 instruments designed to study the small-scale plasma structures in space and time in the key plasma regions: solar wind, bow shock, magnetopause, polar cusps, magnetotail, plasmapause boundary layer and over the polar caps and the auroral zones.

Instrumentation on each Cluster satellite

NumberAcronymInstrumentMeasurementPurpose
1ASPOCActive Spacecraft Potential Control experimentRegulation of spacecraft's electrostatic potentialEnabled the measurement by PEACE of cold electrons (a few eV temperature), otherwise hidden by spacecraft photoelectrons
2CISCluster Ion Spectroscopy experimentIon times-of-flight (TOFs) and energies from 0 to 40 keVComposition and 3D distribution of ions in plasma
3DWPDigital Wave Processing instrumentCoordinates the operations of the EFW, STAFF, WBD and WHISPER instrumentsAt the lowest level, DWP provided electrical signals to synchronise instrument sampling. At the highest level, DWP enabled more complex operational modes by means of macros
4EDIElectron Drift InstrumentElectric field E magnitude and directionE vector, gradients in local magnetic field B
5EFWElectric Field and Wave experimentElectric field E magnitude and directionE vector, spacecraft potential, electron density and temperature
6FGMFluxgate MagnetometerMagnetic field B magnitude and directionB vector and event trigger to all instruments except ASPOC
7PEACEPlasma Electron and Current ExperimentElectron energies from 0.0007 to 30 keV3D distribution of electrons in plasma
8RAPIDResearch with Adaptive Particle Imaging DetectorsElectron energies from 39 to 406 keV, ion energies from 20 to 450 keV3D distributions of high-energy electrons and ions in plasma
9STAFFSpatio-Temporal Analysis of Field Fluctuation experimentMagnetic field B magnitude and direction of EM fluctuations, cross-correlation of E and BProperties of small-scale current structures, source of plasma waves and turbulence
10WBDWide Band Data receiverHigh time resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. It provided a unique new capability to perform Very-long-baseline interferometry (VLBI) measurementsProperties of natural plasma waves (e.g. auroral kilometric radiation) in the Earth magnetosphere and its vicinity including: source location and size and propagation
11WHISPERWaves of High Frequency and Sounder for Probing of Density by RelaxationElectric field E spectrograms of terrestrial plasma waves and radio emissions in the 2–80 kHz range; triggering of plasma resonances by an active sounderSource location of waves by triangulation; electron density within the range 0.2–80 cm−3

Double Star mission with China

In 2003 and 2004, the China National Space Administration launched the Double Star satellites, TC-1 and TC-2, that worked together with Cluster to make coordinated measurements mostly within the magnetosphere. TC-1 stopped operating on 14 October 2007. The last data from TC-2 was received in 2008. TC-2 made a contribution to magnetar science [10] [11] as well as to magnetospheric physics. The TC-1 examined density holes near the Earth's bow shock that can play a role in bow shock formation [12] [13] and looked at neutral sheet oscillations. [14]

Awards

Cluster team awards:

Individual awards:

Discoveries and mission milestones

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2001–2003

Related Research Articles

<span class="mw-page-title-main">Magnetopause</span> Abrupt boundary between a magnetosphere and the surrounding plasma

The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instabilities.

<span class="mw-page-title-main">Magnetosphere</span> Region around an astronomical object in which its magnetic field affects charged particles

In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

<span class="mw-page-title-main">Bow shock</span> Shock wave caused by blowing stellar wind

In astrophysics, bow shocks are shock waves in regions where the conditions of density and pressure change dramatically due to blowing stellar wind. Bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

<span class="mw-page-title-main">Magnetosheath</span> Region of a magnetosphere which cannot fully deflect charged particles

The magnetosheath is the region of space between the magnetopause and the bow shock of a planet's magnetosphere. The regularly organized magnetic field generated by the planet becomes weak and irregular in the magnetosheath due to interaction with the incoming solar wind, and is incapable of fully deflecting the highly charged particles. The density of the particles in this region is considerably lower than what is found beyond the bow shock, but greater than within the magnetopause, and can be considered a transitory state.

<span class="mw-page-title-main">Magnetosphere of Saturn</span> Cavity in the solar wind the sixth planet creates

The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it.

<i>Wind</i> (spacecraft) NASA probe to study solar wind, at L1 since 1995

The Global Geospace Science (GGS) Wind satellite is a NASA science spacecraft designed to study radio waves and plasma that occur in the solar wind and in the Earth's magnetosphere. It was launched on 1 November 1994, at 09:31:00 UTC, from launch pad LC-17B at Cape Canaveral Air Force Station (CCAFS) in Merritt Island, Florida, aboard a McDonnell Douglas Delta II 7925-10 rocket. Wind was designed and manufactured by Martin Marietta Astro Space Division in East Windsor Township, New Jersey. The satellite is a spin-stabilized cylindrical satellite with a diameter of 2.4 m and a height of 1.8 m.

<span class="mw-page-title-main">THEMIS</span> NASA satellite of the Explorer program

Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

A double layer is a structure in a plasma consisting of two parallel layers of opposite electrical charge. The sheets of charge, which are not necessarily planar, produce localised excursions of electric potential, resulting in a relatively strong electric field between the layers and weaker but more extensive compensating fields outside, which restore the global potential. Ions and electrons within the double layer are accelerated, decelerated, or deflected by the electric field, depending on their direction of motion.

<span class="mw-page-title-main">Magnetospheric Multiscale Mission</span> Four NASA robots studying Earths magnetosphere (2015-present)

The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. The spacecraft were launched on 13 March 2015 at 02:44 UTC. The mission is designed to gather information about the microphysics of magnetic reconnection, energetic particle acceleration, and turbulence⁠ — processes that occur in many astrophysical plasmas. As of March 2020, the MMS spacecraft has enough fuel to remain operational until 2040.

<span class="mw-page-title-main">Matt Taylor (scientist)</span> British astrophysicist (born 1973)

Matthew Graham George Thaddeus Taylor is a British astrophysicist employed by the European Space Agency. He is best known to the public for his involvement in the landing on Comet 67P/Churyumov–Gerasimenko by the Rosetta mission 's Philae lander, which was the first spacecraft to land on a comet nucleus. He is Project Scientist of the Rosetta mission.

<span class="mw-page-title-main">SMILE (spacecraft)</span> Chinese–European satellite studying Earths magnetosphere

Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a planned joint venture mission between the European Space Agency and the Chinese Academy of Sciences. SMILE will image for the first time the magnetosphere of the Sun in soft X-rays and UV during up to 40 hours per orbit, improving our understanding of the dynamic interaction between the solar wind and Earth's magnetosphere. The prime science questions of the SMILE mission are

David Breed Beard was a space physicist, known for "pioneering work on the shapes and structures of planetary magnetospheres, Jovian radio emissions, and comets."

<span class="mw-page-title-main">Dungey Cycle</span>

The Dungey cycle, officially proposed by James Dungey in 1961, is a phenomenon that explains interactions between a planet's magnetosphere and solar wind. Dungey originally proposed a cyclic behavior of magnetic reconnection between Earth's magnetosphere and flux of solar wind. This reconnection explained previously observed dynamics within Earth's magnetosphere. The rate of reconnection in the beginning of the cycle is dependent on the orientation of the interplanetary magnetic field as well as the resultant plasma conditions at the site of reconnection. On Earth, the reconnection cycle takes around 1 hour, but this differs from planet to planet.

Cynthia Cattell is a space plasma physicist known for her research on solar flares and radiation belts.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

In space physics, an electrostatic solitary wave (ESW) is a type of electromagnetic soliton occurring during short time scales in plasma. When a rapid change occurs in the electric field in a direction parallel to the orientation of the magnetic field, and this perturbation is caused by a unipolar or dipolar electric potential, it is classified as an ESW.

References

Selected publications

All 3766 publications related to the Cluster and the Double Star missions (count as of 30 November 2024) can be found on the publication section of the ESA Cluster mission website. Among these publications, 3270 are refereed publications, 342 proceedings, 124 PhDs and 31 other types of theses.

  1. 1 2 3 4 5 6 "Cluster (Four Spacecraft Constellation in Concert with SOHO)". ESA . Retrieved 2014-03-13.
  2. "Cluster II operations". European Space Agency. Retrieved 29 November 2011.
  3. 1 2 "Extended life for ESA's science missions". ESA . 7 March 2023. Retrieved 20 March 2023.
  4. 1 2 Foust, Jeff (September 9, 2024). "ESA performs targeted reentry of Cluster satellite". SpaceNews. Retrieved September 9, 2024.
  5. 1 2 "Cluster II: Mission to the Earth's Magnetosphere". Max Planck Institute . 2024. Retrieved 9 September 2024.
  6. "European Space Agency Announces Contest to Name the Cluster Quartet" (PDF). XMM-Newton Press Release. European Space Agency: 4. 2000. Bibcode:2000xmm..pres....4.
  7. "Bristol and Cluster – the link". European Space Agency. Retrieved 2 September 2013.
  8. "Cluster II – Scientific Update and Presentation of Model to the City of Bristol". Spaceref. SpaceRef Interactive Inc. 9 July 2001. Archived from the original on September 3, 2013.
  9. "Cluster – Presentation of model to the city of Bristol and science results overview". European Space Agency.
  10. Schwartz, S.; et al. (2005). "A γ-ray giant flare from SGR1806-20: evidence for crustal cracking via initial timescales". The Astrophysical Journal. 627 (2): L129–L132. arXiv: astro-ph/0504056 . Bibcode:2005ApJ...627L.129S. doi:10.1086/432374. S2CID   119371524.
  11. "ESA Science & Technology - Double Star and Cluster observe first evidence of crustal cracking". sci.esa.int. September 21, 2005. Archived from the original on 2020-02-01. Retrieved 2021-07-14.
  12. "ESA Science & Technology - Cluster and Double Star discover density holes in the solar wind". sci.esa.int. June 20, 2006. Archived from the original on 2021-08-29. Retrieved 2021-07-14.
  13. Britt, Robert Roy (June 20, 2006). "CNN.com - Earth surrounded by giant fizzy bubbles - Jun 20, 2006". www.cnn.com. Archived from the original on 2006-06-22. Retrieved 2021-07-14.
  14. "ESA Science & Technology - Cluster and Double Star reveal the extent of neutral sheet oscillations". sci.esa.int. March 30, 2006. Archived from the original on 2021-04-18. Retrieved 2021-07-14.
  15. "Citation for the 2019 RAS Group Achievement Award (G): The Cluster Science and Operations teams" (PDF). Archived (PDF) from the original on 17 October 2023.
  16. "Laurels for Cluster-Double Star teams". ESA. 28 September 2010. Archived from the original on 17 October 2023.
  17. "EGU announces its 2023 awards and medals!". European Geosciences Union. 30 November 2022. Archived from the original on 7 March 2023.
  18. Nilsson, Anne Klint (8 May 2020). "Young IRF scientist awarded a Zeldovich Medal". Swedish Institute of Space Physics. Archived from the original on 17 October 2023.
  19. "Citation for the 2019 RAS 'G' Gold Medal: Professor Margaret Kivelson" (PDF). Archived (PDF) from the original on 17 October 2023.
  20. "ESSC member, Prof Hermann J Opgenoorth, awarded the Baron Marcel Nicolet Space Weather Medal 2018". 7 November 2018. Archived from the original on 26 November 2018.
  21. "Stephen A. Fuselier". Hannes Alfvén Medal 2016. European Geosciences Union. Archived from the original on 17 October 2023.
  22. "UK Space Weather Expert wins prestigious international award". Science and Technology Facilities Council. 15 November 2016. Archived from the original on 16 November 2016.
  23. "Rumi Nakamura". Julius Bartels Medal 2014. European Geosciences Union. Archived from the original on 17 October 2023.
  24. "Service Award". Winners of the 2013 awards, medals and prizes - full details. Royal Astronomical Society. Archived from the original on 19 March 2013.
  25. "Göran Marklund". Hannes Alfvén Medal 2013. European Geosciences Union. Archived from the original on 17 October 2023.
  26. "Chapman Medal (G)". Winners of the 2013 awards, medals and prizes - full details. Royal Astronomical Society. Archived from the original on 19 March 2013.
  27. 1 2 "Chapman Medal Winners" (PDF). Royal Astronomical Society. Archived (PDF) from the original on 17 October 2023.
  28. Pu, Zuyin (15 January 2013). "Zuyin Pu Receives 2012 International Award: Response". Eos. 94 (3). American Geophysical Union: 35–36. Bibcode:2013EOSTr..94...35P. doi:10.1002/2013EO030019.
  29. "UI staff, faculty honored for excellence" (Press release). University of Iowa. 10 October 2012. Archived from the original on 27 April 2013.
  30. "Zeldovich Medals". Archived from the original on 6 October 2023.
  31. "Prof. André Balogh". Astronomy & Geophysics . 49 (1). Royal Astronomical Society: 1.36. February 2008. doi:10.1111/j.1468-4004.2008.49135_5.x. ISSN   1468-4004.
  32. Wing, S.; Berchem, J.; Escoubet, C.P.; et al. (2023). "Multispacecraft Observations of the Simultaneous Occurrence of Magnetic Reconnection at High and Low Latitudes During the Passage of a Solar Wind Rotational Discontinuity Embedded in the April 9-11, 2015 ICME". Geophys. Res. Lett. 50 (9). Bibcode:2023GeoRL..5003194W. doi: 10.1029/2023GL103194 .
  33. Zhang, C.; Rong, Z.; Zhang, L.; et al. (2023). "Properties of Flapping Current Sheet of the Martian Magnetotail". Journal of Geophysical Research: Space Physics. 128 (4). Bibcode:2023JGRA..12831232Z. doi:10.1029/2022JA031232. S2CID   257752946.
  34. Marino, R.; Sorriso-Valvo, L. (2023). "Scaling laws for the energy transfer in space plasma turbulence". Physics Reports. 1006: 1-144. Bibcode:2023PhR..1006....1M. doi: 10.1016/j.physrep.2022.12.001 . S2CID   255209931.
  35. Andrés, N.; Bandyopadhyay, R.; McComas, D.J.; et al. (2023). "Observation of Turbulent Magnetohydrodynamic Cascade in the Jovian Magnetosheath". Astrophysical Journal. 945 (8): 8. arXiv: 2209.05386 . Bibcode:2023ApJ...945....8A. doi: 10.3847/1538-4357/acb7e0 .
  36. Xiao, C.; He, F.; Shi, Q.Q.; et al. (2023). "Evidence for lunar tide effects in Earth's plasmasphere". Nature Physics. 19 (4): 486–491. Bibcode:2023NatPh..19..486X. doi: 10.1038/s41567-022-01882-8 .
  37. Li, B.; Yang, H.; Sun, J.; et al. (2023). "Cluster Observation of Ion Outflow in Middle Altitude LLBL/Cusp from Different Origins". Magnetochemistry. 9 (2): 39. doi: 10.3390/magnetochemistry9020039 .
  38. Tsyganenko, N.A.; Andreeva, V.A.; Sitnov, M.I.; Stephens, G.K. (2022). "Magnetosphere distortions during the "satellite killer" storm of February 3–4, 2022, as derived from a hybrid empirical model and archived data mining". Journal of Geophysical Research: Space Physics. 127 (12). Bibcode:2022JGRA..12731006T. doi: 10.1029/2022JA031006 . S2CID   254300251.
  39. Li, W. (2022). "The Dawn-Dusk Tail Lobe Magnetotail Configuration and the Formation of Aurora Transpolar Arc". Journal of Geophysical Research: Space Physics. 127 (10). Bibcode:2022JGRA..12730676L. doi:10.1029/2022JA030676. S2CID   252929937.
  40. Zhang, H. (2022). "A highway for atmospheric ion escape from Earth during the impact of an interplanetary coronal mass ejection". Astrophysical Journal. 937 (4): 4. Bibcode:2022ApJ...937....4Z. doi: 10.3847/1538-4357/ac8a93 . S2CID   252306675.
  41. Fear, R.C. (2022). "Joint Cluster/ground-based studies in the first 20 years of the Cluster mission" (PDF). Journal of Geophysical Research: Space Physics. 127 (8). Bibcode:2022JGRA..12729928F. doi:10.1029/2021JA029928. S2CID   251333661.
  42. Qiu, H.; Han, D.-S.; et al. (2022). "In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection". Geophys. Res. Lett. 49 (15). Bibcode:2022GeoRL..4999408Q. doi:10.1029/2022GL099408. S2CID   250718001.
  43. Hwang, K.-J.; Weygand, J.M.; Sibeck, D.G.; et al. (2022). "Kelvin-Helmholtz vortices as an interplay of Magnetosphere-Ionosphere coupling". Frontiers in Astronomy and Space Sciences. 9: 895514. Bibcode:2022FrASS...9.5514H. doi: 10.3389/fspas.2022.895514 .
  44. "Magnetic vortices explain mysterious auroral beads". 2 June 2022. Archived from the original on 28 December 2022.
  45. Petrinec, S.M.; Wing, S.; Johnson, R.; Zhang, Y.; et al. (2022). "Multi-Spacecraft Observations of Fluctuations Occurring Along the Dusk Flank Magnetopause, and Testing the Connection to an Observed Ionospheric Bead". Frontiers in Astronomy and Space Sciences. 9: 827612. Bibcode:2022FrASS...927612P. doi: 10.3389/fspas.2022.827612 .
  46. Lane, J.H.; Grocott, A.; Case, N.A. (2022). "The influence of localized dynamics on dusk-dawn convection in the Earth's magnetotail". Journal of Geophysical Research: Space Physics. 127 (5). Bibcode:2022JGRA..12730057L. doi: 10.1029/2021JA030057 . S2CID   248850580.
  47. Chong, G.S.; Pitkänen, T.; Hamrin, M.; Kullen, A. (2022). "Dawn-dusk ion flow asymmetry in the plasma sheet". Journal of Geophysical Research: Space Physics. 127 (4). doi: 10.1029/2021JA030208 . S2CID   247652250.
  48. LaBelle, J.; Yearby, K.; Pickett, J.S. (2022). "South Pole Station ground-based and Cluster satellite measurements of leaked and escaping Auroral Kilometric Radiation" (PDF). Journal of Geophysical Research: Space Physics. 127 (2). Bibcode:2022JGRA..12729399L. doi:10.1029/2021JA029399. S2CID   246333134.
  49. Nguyen, G.; Aunai, N.; Michotte de Welle, B.; Jeandet, A.; Lavraud, B.; Fontaine, D. (2022). "Massive multi-mission statistical study and analytical modeling of the Earth's magnetopause" (PDF). Journal of Geophysical Research: Space Physics. 127 (1). doi:10.1029/2021JA029773. S2CID   245248549.
  50. "Swarm and Cluster get to the bottom of geomagnetic storms". ESA. 15 December 2021. Archived from the original on 11 January 2024.
  51. Wei, D.; Dunlop, M.; et al. (2021). "Intense dB/dt variations driven by near-Earth bursty bulk flows (BBFs): A case study". Geophysical Research Letters. 48 (4). Bibcode:2021GeoRL..4891781W. doi: 10.1029/2020GL091781 . S2CID   234111026.
  52. Toledo-Rodeondo, S.; et al. (2021). "Solar Wind—Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions: Simultaneous Multi-Point Observations". Journal of Geophysical Research: Space Physics. 126 (11). Bibcode:2021JGRA..12629506T. doi:10.1029/2021JA029506. hdl: 10481/72025 . S2CID   243961209.
  53. Kronberg, E.; et al. (2021). "Prediction of Soft Proton Intensities in the Near-Earth Space Using Machine Learning". Astrophysical Journal. 921 (1): 76. arXiv: 2105.15108 . Bibcode:2021ApJ...921...76K. doi: 10.3847/1538-4357/ac1b30 . S2CID   235254767.
  54. Nakamura, R.; et al. (2021). "Thin Current Sheet Behind the Dipolarization Front". Journal of Geophysical Research: Space Physics. 126 (10). arXiv: 2208.12671 . Bibcode:2021JGRA..12629518N. doi:10.1029/2021JA029518. S2CID   241861877.
  55. Marklund, G.; Lindqvist, P.-A. (2021). "Cluster Multi-Probing of the Aurora During Two Decades". Journal of Geophysical Research: Space Physics. 126 (6). Bibcode:2021JGRA..12629497M. doi: 10.1029/2021JA029497 . S2CID   236271440.
  56. Huang, S.Y.; et al. (2021). "Multi-spacecraft measurement of anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence". Journal of Geophysical Research: Space Physics. 126 (5). Bibcode:2021JGRA..12628780H. doi:10.1029/2020JA028780. S2CID   235556211.
  57. Zhou, H.; He, H.-Q. (2021). "The Solar-cycle Variations of the Anisotropy of Taylor Scale and Correlation Scale in the Solar Wind Turbulence". Astrophysical Journal Letters. 911 (1): L2. arXiv: 2104.04920 . Bibcode:2021ApJ...911L...2Z. doi: 10.3847/2041-8213/abef00 . S2CID   233210154.
  58. Haaland, S.; et al. (2021). "Heavy Metal and Rock in Space: Cluster RAPID Observations of Fe and Si". Journal of Geophysical Research: Space Physics. 126 (3). Bibcode:2021JGRA..12628852H. doi: 10.1029/2020JA028852 . hdl: 11250/2838752 . S2CID   233922057.
  59. Lazar, M.; Pierrard, S. (2020). "Characteristics of solar wind suprathermal halo electrons". Astronomy and Astrophysics. 642 (A130): A130. Bibcode:2020A&A...642A.130L. doi: 10.1051/0004-6361/202038830 . S2CID   229028809.
  60. Hatch, S.M.; Haaland, S. (2020). "Seasonal and hemispheric asymmetries of F region polar cap plasma density: Swarm and CHAMP observations". Journal of Geophysical Research: Space Physics. 125 (11): e2020JA028084. Bibcode:2020JGRA..12528084H. doi: 10.1029/2020JA028084 .
  61. Bakrania, M.R.; Rae, I.J.; Walsh, A.P. (2020). "Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes". Front. Astron. Space Sci. 7 (80): 80. arXiv: 2009.10466 . Bibcode:2020FrASS...7...80B. doi: 10.3389/fspas.2020.593516 .
  62. Zhou, G.; He, H.-Q.; Wan, W. (2020). "Effects of Solar Activity on Taylor Scale and Correlation Scale in Solar Wind Magnetic Fluctuations". The Astrophysical Journal Letters. 899 (L32): L32. arXiv: 2008.08542 . Bibcode:2020ApJ...899L..32Z. doi: 10.3847/2041-8213/abaaa9 .
  63. Aryan, H.; Agapitov, O.V. (2020). "Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements". Journal of Geophysical Research: Space Physics. 125 (8): e2020JA028018. Bibcode:2020JGRA..12528018A. doi: 10.1029/2020JA028018 .
  64. "Cluster's 20 years of studying Earth's magnetosphere". ESA. 7 August 2020. Archived from the original on 26 January 2024.
  65. "Auroral substorms triggered by 'short circuiting' of plasma flows". ESA. 31 July 2020. Archived from the original on 17 October 2023.
  66. Mishin, E.; Streltsov, A. (2020). "Prebreakup Arc Intensification due to Short Circuiting of Mesoscale Plasma Flows Over the Plasmapause". Journal of Geophysical Research: Space Physics. 125 (5): e2019JA027666. Bibcode:2020JGRA..12527666M. doi: 10.1029/2019JA027666 .
  67. "Podcast: 20 years of ESA's Cluster mission". Sky at Night. BBC. 15 July 2020. Archived from the original on 17 October 2023.
  68. Forsyth, C.; Sergeev, V.A.; Henderson, M.G.; Nishimura, Y.; Gallardo-Lacourt, B. (2020). "Physical Processes of Meso-Scale, Dynamic Auroral Forms". Space Sci. Rev. 216 (3): 46. Bibcode:2020SSRv..216...46F. doi: 10.1007/s11214-020-00665-y .
  69. "Iron is everywhere in Earth's vicinity, suggest two decades of Cluster data". ESA. 19 March 2020. Archived from the original on 17 October 2023.
  70. Haaland, S.; Daly, P.W.; Vilenius, E.; Dandouras, I. (2020). "Suprathermal Fe in the Earth's plasma environment: Cluster RAPID observations". Journal of Geophysical Research: Space Physics. 125 (2): e2019JA027596. Bibcode:2020JGRA..12527596H. doi: 10.1029/2019JA027596 .
  71. Nakamura, T.K.M.; Stawarz, J.E.; Hasegawa, H.; Narita, Y.; Franci, L.; Narita, Y.; Nakamura, R.; Nystrom, W.D (2020). "Effects of Fluctuating Magnetic Field on the Growth of the Kelvin-Helmholtz Instability at the Earth's Magnetopause". Journal of Geophysical Research: Space Physics. 125 (3): e2019JA027515. Bibcode:2020JGRA..12527515N. doi:10.1029/2019JA027515. S2CID   212953719.
  72. Lai, H.R.; Russell, C.T.; Jia, Y.D.; Connors, M. (2019). "First observations of the disruption of the Earth's foreshock wave field during magnetic clouds". Geophysical Research Letters. 46 (24): 14282–14289. doi:10.1029/2019GL085818. S2CID   213497617.
  73. "Earth's magnetic song recorded for the first time during a solar storm". ESA. 18 November 2019. Archived from the original on 20 September 2023.
  74. Turc, L.; Roberts, O.W.; Archer, M.O.; Palmroth, M.; Battarbee, M.; Brito, T.; Ganse, U.; Grandin, M.; Pfau-Kempf, Y.; Escoubet, C.P.; Dandouras, I. (2019). "First observations of the disruption of the Earth's foreshock wave field during magnetic clouds" (PDF). Geophysical Research Letters. 46 (22): 1612–1624. Bibcode:2019GeoRL..4612644T. doi:10.1029/2019GL084437. hdl: 10138/315030 . S2CID   212882584. Archived from the original (PDF) on 2021-12-29. Retrieved 2020-03-17.
  75. Duan, S.; Dai, L.; Wang, C.; Cai, C.; He, Z.; Zhang, Y.; Rème, H.; Dandouras, I. (2019). "Conjunction Observations of Energetic Oxygen Ions O+ Accumulated in the Sequential Flux Ropes in the High-Altitude Cusp" (PDF). Journal of Geophysical Research: Space Physics. 124 (10): 7912–7922. Bibcode:2019JGRA..124.7912D. doi:10.1029/2019JA026989. S2CID   210305167.
  76. "Cluster and XMM-Newton pave the way for SMILE". ESA. 27 August 2019. Archived from the original on 1 January 2024.
  77. Connor, H.K.; Carter, J.A. (2019). "Exospheric neutral hydrogen density at the nominal 10 RE subsolar point deduced from XMM-Newton X-ray observations". Journal of Geophysical Research: Space Physics. 124 (3): 1612–1624. Bibcode:2019JGRA..124.1612C. doi: 10.1029/2018JA026187 .
  78. Wang, J.; et al. (2019). "Asymmetric transport of the Earth's polar outflows by the interplanetary magnetic field". Astrophysical Journal Letters. 881 (2): L34. Bibcode:2019ApJ...881L..34W. doi: 10.3847/2041-8213/ab385d . S2CID   202135965.
  79. Chen, G.; Fu, H.S.; Zhang, Y.; Li, X.; Ge, Y.S.; Du, A.M.; Liu, C.M.; Xu, Y. (2019). "Energetic electron acceleration in unconfined reconnection jets". The Astrophysical Journal. 881 (1): L8. Bibcode:2019ApJ...881L...8C. doi: 10.3847/2041-8213/ab3041 .
  80. Kieokaew, R.; Foullon, C. (2019). "Kelvin-Helmholtz waves magnetic curvature and vorticity: Four-spacecraft Cluster observations". Journal of Geophysical Research: Space Physics. 124 (5): 3347–3359. Bibcode:2019JGRA..124.3347K. doi: 10.1029/2019JA026484 . hdl: 10871/37307 .
  81. Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R. (2018). "Electron distributions in kinetic scale field line resonances: A comparison of simulations and observations". Geophysical Research Letters. 45 (12): 5826–5835. Bibcode:2018GeoRL..45.5826D. doi: 10.1029/2018GL077748 . OSTI   1468802.
  82. Dimmock, A.P.; et al. (2019). "Direct evidence of nonstationary collisionless shocks in space plasmas". Science Advances. 5 (2): eaau9926. Bibcode:2019SciA....5.9926D. doi:10.1126/sciadv.aau9926. PMC   6392793 . PMID   30820454.
  83. Kruparova, O.; et al. (2019). "Statistical survey of the terrestrial bow shock observed by the Cluster spacecraft" (PDF). Journal of Geophysical Research: Space Physics. 124 (3): 1539–1547. Bibcode:2019JGRA..124.1539K. doi:10.1029/2018JA026272. hdl: 11603/12953 . S2CID   134189855.
  84. Fu, H.S.; Xu, Y.; Vaivads, A.; Khotyaintsev, Y.V. (2019). "Super-efficient electron acceleration by an isolated magnetic reconnection". Astrophysical Journal Letters. 870 (L22): L22. Bibcode:2019ApJ...870L..22F. doi: 10.3847/2041-8213/aafa75 .
  85. Slapak, R.; Nilsson, H. (2018). "The Oxygen Ion Circulation in The Outer Terrestrial Magnetosphere and Its Dependence on Geomagnetic Activity". Geophys. Res. Lett. 45 (23): 12, 669–12, 676. Bibcode:2018GeoRL..4512669S. doi: 10.1029/2018GL079816 .
  86. Schillings, A.; Nilsson, H.; Slapak, R.; Wintoft, P.; Yamauchi, M.; Wik, M.; Dandouras, I.; Carr, C.M. (2018). "O+ escape during the extreme space weather event of 4–10 September 2017". Space Weather. 16 (4): 1363–1376. Bibcode:2018SpWea..16.1363S. doi: 10.1029/2018sw001881 . hdl: 10044/1/64932 .
  87. Liebert, E.; Nabert, C.; Glassmeier, K.-H. (2018). "Statistical survey of day-side magnetospheric current flow using Cluster observations: bow shock". Annales Geophysicae. 36 (4): 1073–1080. Bibcode:2018AnGeo..36.1073L. doi: 10.5194/angeo-36-1073-2018 .
  88. Liu, C.M.; H. S. Fu; D. Cao; Y. Xu; A. Divin (2018). "Detection of magnetic nulls around reconnection fronts". The Astrophysical Journal. 860 (2): 128. Bibcode:2018ApJ...860..128L. doi: 10.3847/1538-4357/aac496 . S2CID   125461272.
  89. Coxon, J.C.; Freeman, M.P.; Jackman, C.M.; Forsyth, C.; Rae, I.J.; Fear, R.C. (2018). "Tailward propagation of magnetic energy density variations with respect to substorm onset times". Journal of Geophysical Research: Space Physics. 123 (6): 4741–4754. Bibcode:2018JGRA..123.4741C. doi: 10.1029/2017JA025147 .
  90. Masson, A.; Nykyri, K. (2018). "Kelvin–Helmholtz Instability: lessons learned and ways forward" (PDF). Space Science Reviews. 214 (4): 71. Bibcode:2018SSRv..214...71M. doi: 10.1007/s11214-018-0505-6 . S2CID   125646793.
  91. Roberts, O. W.; Narita, Y.; Escoubet, C.-P (2018). "Three-dimensional density and compressible magnetic structure in solar wind turbulence". Annales Geophysicae. 36 (2): 527–539. Bibcode:2018AnGeo..36..527R. doi: 10.5194/angeo-36-527-2018 .
  92. Hadid, L. Z.; Sahraoui, F.; Galtier, S.; Huang, S. Y. (January 2018). "Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data". Physical Review Letters. 120 (5): 055102. arXiv: 1710.04691 . Bibcode:2018PhRvL.120e5102H. doi:10.1103/PhysRevLett.120.055102. PMID   29481187. S2CID   3676068.
  93. Grigorenko, E.E.; Dubyagin, S.; Malykhin, A.; Khotyaintsev, Y.V.; Kronberg, E.A.; Lavraud, B.; Ganushkina, N.Yu (2018). "Intense current structures observed at electron kinetic Scales in the near-Earth magnetotail during dipolarization and substorm current wedge formation". Geophysical Research Letters. 45 (2): 602–611. Bibcode:2018GeoRL..45..602G. doi:10.1002/2017GL076303. hdl: 2027.42/142547 . S2CID   133980983. Archived from the original on 2019-10-31. Retrieved 2019-10-31.
  94. Andreeva V. A.; Tsyganenko N. A. (2017). "Empirical Modeling of the Quiet and Storm Time Geosynchronous Magnetic Field". Space Weather. 16 (1): 16–36. Bibcode:2018SpWea..16...16A. doi: 10.1002/2017SW001684 .
  95. Roberts, O.W.; Y. Narita; C.P. Escoubet (2017). "Direct measurement of anisotropic and asymmetric wave vector Spectrum in ion-scale solar wind turbulence". The Astrophysical Journal. 851 (1): L11. Bibcode:2017ApJ...851L..11R. doi: 10.3847/2041-8213/aa9bf3 .
  96. Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis (2017). "Coherent structures at ion scales in the fast solar wind: Cluster observations". The Astrophysical Journal. 849 (1): 49. arXiv: 1709.09644 . Bibcode:2017ApJ...849...49P. doi: 10.3847/1538-4357/aa9022 . S2CID   119050245.
  97. Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis (2017). "Near-Earth plasma sheet boundary dynamics during substorm dipolarization". Earth, Planets and Space. 69 (1): 129. Bibcode:2017EP&S...69..129N. doi: 10.1186/s40623-017-0707-2 . PMC   6961498 . PMID   32009832.
  98. Yushkov, E.; A. Petrukovich; A. Artemyev; R. Nakamura (2017). "Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: nine years of Cluster observations in the Earth magnetotail". Journal of Geophysical Research: Space Physics. 122 (9): 9294–9305. Bibcode:2017JGRA..122.9294Y. doi:10.1002/2016JA023739. S2CID   134267682.
  99. Giagkiozis, S.; S. N. Walker; S. A. Pope; G. Collinson (2017). "Validation of single spacecraft methods for collisionless shock velocity estimation". Journal of Geophysical Research: Space Physics. 122 (8): 8632–8641. Bibcode:2017JGRA..122.8632G. doi: 10.1002/2017JA024502 .
  100. Zhao, L.L.; Zhang, H.; Zong, Q.G. (2017). "Global ULF waves generated by a hot flow anomaly". Geophysical Research Letters. 44 (11): 5283–5291. Bibcode:2017GeoRL..44.5283Z. doi: 10.1002/2017GL073249 .
  101. Fu, H.S.; A. Vaivads; Y.V. Khotyaintsev; M. André; J. B. Cao; V. Olshevsky; J. P. Eastwood; A. Retinò (2017). "Intermittent energy dissipation by turbulent reconnection". Geophysical Research Letters. 44 (1): 37–43. Bibcode:2017GeoRL..44...37F. doi:10.1002/2016GL071787. hdl: 10044/1/44378 . S2CID   125215749.
  102. Turc, L.; D. Fontaine; C.P. Escoubet; E.K.J. Kilpua; A.P. Dimmock (2017). "Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth's magnetosheath". Journal of Geophysical Research: Space Physics. 122 (3): 2956–2972. Bibcode:2017JGRA..122.2956T. doi:10.1002/2016JA023654. hdl: 10138/224163 . S2CID   125621578.
  103. Vines, S.K.; S.A. Fuselier; S.M. Petrinec; K.J. Trattner; R.C. Allen (2017). "Occurrence frequency and location of magnetic islands at the dayside magnetopause". Journal of Geophysical Research: Space Physics. 122 (4): 4138–4155. Bibcode:2017JGRA..122.4138V. doi: 10.1002/2016JA023524 .
  104. Case, N. A.; A. Grocott; S. E. Milan; T. Nagai; J. P. Reistad (2017). "An analysis of magnetic reconnection events and their associated auroral enhancements". Journal of Geophysical Research: Space Physics. 122 (2): 2922–2935. Bibcode:2017JGRA..122.2922C. doi: 10.1002/2016JA023586 . hdl: 2381/39489 .
  105. Lugaz, N.; C.J. Farrugia; C.-L. Huang; R.M. Winslow; H.E. Spence; N.A. Schwadron (2016). "Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind". Nature Communications. 7: 13001. Bibcode:2016NatCo...713001L. doi:10.1038/ncomms13001. PMC   5063966 . PMID   27694887.
  106. Moore, T.W.; Nykyri, K.; Dimmock, A.P. (2016). "Cross-scale energy transport in space plasmas". Nature Physics. 12 (12): 1164–1169. Bibcode:2016NatPh..12.1164M. doi:10.1038/nphys3869. S2CID   125684283.
  107. Schmid, D.; R. Nakamura; M. Volwerk; F. Plaschke; Y. Narita; W. Baumjohann; et al. (2016). "A comparative study of dipolarization fronts at MMS and Cluster". Geophysical Research Letters. 43 (12): 6012–6019. Bibcode:2016GeoRL..43.6012S. doi:10.1002/2016GL069520. PMC   4949994 . PMID   27478286.
  108. Parks, G.K.; E. Lee; S.Y. Fu; H.E. Kim; Y.Q. Ma; Z.W. Yang; Y. Liu; N. Lin; J. Hong; P. Canu (2016). "Transport of solar wind H+ and He++ ions across Earth's bow shock". The Astrophysical Journal. 825 (2): L27. Bibcode:2016ApJ...825L..27P. doi: 10.3847/2041-8205/825/2/L27 . hdl: 11603/31332 .
  109. 1 2 Lee, S.H.; H. Zhang; Q.-G. Zong; A. Otto; H. Rème; E. Liebert (2016). "A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause". Journal of Geophysical Research: Space Physics. 121 (1): 492–506. Bibcode:2016JGRA..121..492L. doi: 10.1002/2015JA021540 .
  110. 1 2 Zhang, B.; O.J. Brambles; W. Lotko; J.E. Ouellette; J.G. Lyon (2016). "The role of ionospheric O+ outflow in the generation of earthward propagating plasmoids". Journal of Geophysical Research: Space Physics. 121 (2): 1425–1435. Bibcode:2016JGRA..121.1425Z. doi: 10.1002/2015JA021667 .
  111. Yao, Z.; A.N. Fazakerley; A. Varsani; I.J. Rae; C.J. Owen; et al. (2016). "Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations". Journal of Geophysical Research: Space Physics. 121 (6): 5185–5202. Bibcode:2016JGRA..121.5185Y. doi: 10.1002/2015JA022238 .
  112. L. Turc; C.P. Escoubet; D. Fontaine; E.K.J. Kilpua; S. Enestam (2016). "Cone angle control of the interaction of magnetic clouds with the Earth's bow shock". Geophysical Research Letters. 43 (10): 4781–4789. Bibcode:2016GeoRL..43.4781T. doi:10.1002/2016GL068818. S2CID   131474026.
  113. Cheng, Z.W.; J.C. Zhang; J.K. Shi; L.M. Kistler; M. Dunlop; I. Dandouras; A. Fazakerley (2016). "The particle carriers of field-aligned currents in the Earth's magnetotail during a substorm". Journal of Geophysical Research: Space Physics. 121 (4): 3058–3068. Bibcode:2016JGRA..121.3058C. doi: 10.1002/2015JA022071 .
  114. Wang, R.; Q. Lu; R. Nakamura; C. Huang; A. Du; F. Guo; W. Teh; M. Wu; S. Lu; S. Wang (2015). "Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection". Nature Physics. 12 (3): 263–267. Bibcode:2016NatPh..12..263W. doi: 10.1038/nphys3578 .
  115. Décréau, P.M.E.; Aoutou, S.; Denazelle, A.; Galkina, I.; Rauch, J.-L.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F. (2015). "Wide-banded NTC radiation: local to remote observations by the four Cluster satellites". Annales Geophysicae. 33 (10): 1285–1300. Bibcode:2015AnGeo..33.1285D. doi: 10.5194/angeo-33-1285-2015 .
  116. Eriksson, E.; A. Vaivads; Y. V. Khotyaintsev; V. M. Khotyayintsev; M. André (2015). "Statistics and accuracy of magnetic null identification in multispacecraft data". Geophysical Research Letters. 42 (17): 6883–6889. Bibcode:2015GeoRL..42.6883E. doi: 10.1002/2015GL064959 .
  117. Cai, D.; A. Esmaeili; B. Lembège; K.-I. Nishikawa (2015). "Cusp dynamics under northward IMF using three-dimensional global particle-in-cell simulations" (PDF). Journal of Geophysical Research: Space Physics. 120 (10): 8368–8386. Bibcode:2015JGRA..120.8368C. doi: 10.1002/2015JA021230 .
  118. Balikhin, M.A.; Y.Y. Shprits; S.N. Walker; L. Chen; N. Cornilleau-Wehrlin; I. Dandouras; O. Santolik; C. Carr; K.H. Yearby; B. Weiss (2015). "Observations of Discrete Harmonics Emerging From Equatorial Noise". Nature Communications. 6: 7703. Bibcode:2015NatCo...6.7703B. doi:10.1038/ncomms8703. PMC   4510698 . PMID   26169360.
  119. Dunlop, M.W.; J.-Y. Yang; Y.-Y. Yang; C. Xiong; H. Lühr; Y. V. Bogdanova; C. Shen; N. Olsen; Q.-H. Zhang; J.-B. Cao; H.-S. Fu; W.-L. Liu; C. M. Carr; P. Ritter; A. Masson; R. Haagmans (2015). "Simultaneous field-aligned currents at Swarm and Cluster satellites". Geophysical Research Letters. 42 (10): 3683–3691. Bibcode:2015GeoRL..42.3683D. doi: 10.1002/2015GL063738 . hdl: 10044/1/23235 .
  120. Russell, A. J. B.; Karlsson, T.; Wright, A. N. (2015). "Magnetospheric signatures of ionospheric density cavities observed by Cluster" (PDF). Journal of Geophysical Research: Space Physics. 120 (3): 1876–1887. Bibcode:2015JGRA..120.1876R. doi: 10.1002/2014JA020937 .
  121. Russell, A.J.B.; T. Karlsson; A.N. Wright (2015). "Magnetospheric signatures of ionospheric density cavities observed by Cluster" (PDF). Journal of Geophysical Research: Space Physics. 120 (3): 1876–1887. Bibcode:2015JGRA..120.1876R. doi: 10.1002/2014JA020937 .
  122. Maes, L.; Maggiolo, R.; De Keyser, J.; Dandouras, I.; Fear, R.C.; Fontaine, D.; Haaland, S. (2015). "Solar illumination control of ionospheric outflow above polar cap arcs". Geophysical Research Letters. 42 (5): 1304–1311. Bibcode:2015GeoRL..42.1304M. doi: 10.1002/2014GL062972 . hdl: 1956/11661 .
  123. Fear, R.C.; S.E. Milan; R. Maggiolo; A.N. Fazakerley; I. Dandouras; S.B. Mende (2014). "Direct observation of closed magnetic flux trapped in the high latitude magnetosphere" (PDF). Science. 346 (6216): 1506–1510. Bibcode:2014Sci...346.1506F. doi:10.1126/science.1257377. PMID   25525244. S2CID   21017912.
  124. Zhongwei, Y.; Y.D. Liu; G.K. Parks; P. Wu; C. Huang; R. Shi; R. Wang; H. Hu (2014). "Full particle electromagnetic simulations of entropy generation across a collisionless shock". The Astrophysical Journal. 793 (1): L11. Bibcode:2014ApJ...793L..11Y. doi: 10.1088/2041-8205/793/1/L11 .
  125. Kozyra; et al. (2014). "Solar filament impact on 21 January 2005: Geospace consequences". Journal of Geophysical Research: Space Physics. 119 (7): 2169–9402. Bibcode:2014JGRA..119.5401K. doi:10.1002/2013JA019748. hdl: 2027.42/108315 . S2CID   52001277.
  126. Walsh, A. P.; Haaland, S.; Forsyth, C.; Keesee, A. M.; Kissinger, J.; Li, K.; Runov, A.; Soucek, J.; Walsh, B. M.; Wing, S.; Taylor, M.G.G.T. (2014). "Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review". Annales Geophysicae. 32 (7): 705–737. arXiv: 1701.04701 . Bibcode:2014AnGeo..32..705W. doi: 10.5194/angeo-32-705-2014 . S2CID   55038191.
  127. Graham, D.B.; Yu. V. Khotyaintsev; A. Vaivads; M. Andre; A. N. Fazakerley (2014). "Electron Dynamics in the Diffusion Region of Asymmetric Magnetic Reconnection". Physical Review Letters. 112 (21): 215004. Bibcode:2014PhRvL.112u5004G. doi: 10.1103/PhysRevLett.112.215004 .
  128. Luo, H.; E. A. Kronberg; E. E. Grigorenko; M. Fränz; P. W. Daly; G. X. Chen; A. M. Du; L. M. Kistler; Y. Wei (2014). "Evidence of strong energetic ion acceleration in the near-Earth magnetotail". Geophysical Research Letters. 41 (11): 3724–3730. Bibcode:2014GeoRL..41.3724L. doi: 10.1002/2014GL060252 .
  129. Tsyganenko, N. (2014). "Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause". Journal of Geophysical Research: Space Physics. 119 (1): 335–354. Bibcode:2014JGRA..119..335T. doi:10.1002/2013JA019346. S2CID   119786539.
  130. Shen, C.; Y.Y. Yang; Z.J. Rong; X. Li; M. Dunlop; C.M. Carr; Z.X. Liu; D.N. Baker; Z.Q. Chen; Y. Ji; G. Zeng (2014). "Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms". Journal of Geophysical Research: Space Physics. 119 (4): 2458–2465. Bibcode:2014JGRA..119.2458S. doi: 10.1002/2013JA019460 .
  131. Nakamura, R.; T. Karlsson; M. Hamrin; H. Nilsson; O. Marghitu; O. Amm; C. Bunescu; V. Constantinescu; H.U. Frey; A. Keiling; J. Semeter; E. Sorbalo; J. Vogt; C. Forsyth; M.V. Kubyshkina (2014). "Low-altitude electron acceleration due to multiple flow bursts in the magnetotail". Geophysical Research Letters. 41 (3): 777–784. Bibcode:2014GeoRL..41..777N. doi: 10.1002/2013GL058982 .
  132. Décréau, P.M.E.; et al. (2013). "Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair". Annales Geophysicae. 31 (11): 2097–2121. Bibcode:2013AnGeo..31.2097D. doi: 10.5194/angeo-31-2097-2013 .
  133. Haaland, S.; J. Gjerloev (2013). "On the relation between asymmetries in the ring current and magnetopause current". Journal of Geophysical Research: Space Physics. 118 (7): 7593–7604. Bibcode:2013JGRA..118.7593H. doi:10.1002/jgra.50239. hdl: 2027.42/99669 . S2CID   55200569.
  134. Darrouzet, F.; et al. (2013). "Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS, RAPID, and WHISPER onboard Cluster". Journal of Geophysical Research: Space Physics. 118 (7): 4176–4188. Bibcode:2013JGRA..118.4176D. doi:10.1002/jgra.50239. hdl: 2027.42/99669 . S2CID   55200569.
  135. Fu, H.S.; et al. (2013). "Energetic electron acceleration by unsteady magnetic reconnection". Nature Physics. 9 (7): 426–430. Bibcode:2013NatPh...9..426F. doi: 10.1038/nphys2664 .
  136. Dandouras, I. (2013). "Detection of a plasmaspheric wind in the Earth's magnetosphere by the Cluster spacecraft". Annales Geophysicae. 31 (7): 1143–1153. Bibcode:2013AnGeo..31.1143D. doi: 10.5194/angeo-31-1143-2013 .
  137. Viberg, H.; et al. (2013). "Mapping High-Frequency Waves in the Reconnection Diffusion Region". Geophysical Research Letters. 40 (6): 1032–1037. Bibcode:2013GeoRL..40.1032V. doi: 10.1002/grl.50227 .
  138. Cao, J.; et al. (2013). "Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet". Journal of Geophysical Research: Space Physics. 118 (1): 313–320. Bibcode:2013JGRA..118..313C. doi: 10.1029/2012JA018351 .
  139. Perri, S.; et al. (2012). "Detection of small scale structures in the dissipation regime of solar wind turbulence". Physical Review Letters. 109 (19): 191101. Bibcode:2012PhRvL.109s1101P. doi:10.1103/PhysRevLett.109.191101. hdl: 11603/30837 . PMID   23215371.
  140. Hwang, K.-J.; et al. (2012). "The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions". Journal of Geophysical Research: Space Physics. 117 (A8): A08233. Bibcode:2012JGRA..117.8233H. doi:10.1029/2011JA017256. hdl: 2060/20140009615 .
  141. Norgren, C.; et al. (2012). "Lower hybrid drift waves: space observations". Physical Review Letters. 109 (5): 55001. Bibcode:2012PhRvL.109e5001N. doi:10.1103/PhysRevLett.109.055001. PMID   23006181.
  142. Nykyri, K.; et al. (2012). "On the origin of high-energy particles in the cusp diamagnetic cavity". Journal of Atmospheric and Solar-Terrestrial Physics. 87–88 (Special Issue on Physical Process in the Cusp: Plasma Transport and Energization): 70–81. Bibcode:2012JASTP..87...70N. doi:10.1016/j.jastp.2011.08.012.
  143. Wei, Y.; et al. (2012). "Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region". Journal of Geophysical Research: Space Physics. 117 (A16): 3208. Bibcode:2012JGRA..117.3208W. doi: 10.1029/2011JA017340 .
  144. Egedal, J.; et al. (2012). "Large-scale electron acceleration by parallel electric fields during magnetic reconnection". Nature Physics. 8 (4): 321–324. Bibcode:2012NatPh...8..321E. doi: 10.1038/nphys2249 .
  145. André, M.; C.M. Cully (February 2012). "Low-energy ions: A previously hidden solar system particle population, in press". Geophysical Research Letters. 39 (3): n/a. Bibcode:2012GeoRL..39.3101A. doi: 10.1029/2011GL050242 .
  146. Schwartz, S.J.; et al. (2011). "Electron temperature gradient scale at collisionless shocks" (PDF). Physical Review Letters. 107 (21): 215002. Bibcode:2011PhRvL.107u5002S. doi:10.1103/PhysRevLett.107.215002. hdl: 10044/1/18881 . PMID   22181889. S2CID   16065598.
  147. Shay, M.A.; et al. (2011). "Super-Alfvénic Propagation of Substorm Reconnection Signature and Poynting Flux". Physical Review Letters. 107 (6): 065001. arXiv: 1104.0922 . Bibcode:2011PhRvL.107f5001S. doi:10.1103/PhysRevLett.107.065001. PMID   21902330. S2CID   119204267.
  148. Turner, A.J.; et al. (2011). "Nonaxisymmetric Anisotropy of Solar Wind Turbulence". Physical Review Letters. 107 (9): 095002. arXiv: 1106.2023 . Bibcode:2011PhRvL.107i5002T. doi:10.1103/PhysRevLett.107.095002. PMID   21929247. S2CID   736486.
  149. Khotyaintsev, Y.; et al. (2011). "Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons" (PDF). Physical Review Letters. 106 (16): 165001. Bibcode:2011PhRvL.106p5001K. doi:10.1103/PhysRevLett.106.165001. PMID   21599373.
  150. Marklund, G.T.; et al. (2011). "Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights". Physical Review Letters. 106 (5): 055002. Bibcode:2011PhRvL.106e5002M. doi: 10.1103/PhysRevLett.106.055002 . PMID   21405403.
  151. Echim, M.; et al. (2011). "Comparative investigation of the terrestrial and Venusian magnetopause: Kinetic modeling and experimental observations by Cluster and Venus Express". Planetary and Space Science. 59 (10): 1028–1038. Bibcode:2011P&SS...59.1028E. doi:10.1016/j.pss.2010.04.019.
  152. Sahraoui, F.; et al. (2010). "Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind". Physical Review Letters. 105 (13): 131101. Bibcode:2010PhRvL.105m1101S. doi:10.1103/PhysRevLett.105.131101. hdl: 11603/30817 . PMID   21230758.
  153. Masson, A.; et al. (2011), "A decade revealing the Sun-Earth connection in three dimensions", Eos, Transactions American Geophysical Union, 92 (1): 4, Bibcode:2011EOSTr..92Q...4M, doi: 10.1029/2011EO010007
  154. Kistler, L.M.; et al. (2010). "Cusp as a source for oxygen in the plasma sheet during geomagnetic storms". Journal of Geophysical Research: Space Physics. 115 (A3): A03209. Bibcode:2010JGRA..115.3209K. doi: 10.1029/2009JA014838 .
  155. Yuan, Z.; et al. (2010). "Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites" (PDF). Geophysical Research Letters. 37 (7): L07108. Bibcode:2010GeoRL..37.7108Y. doi:10.1029/2010GL042711. S2CID   129916422.
  156. Laakso, Harri; Taylor, Matthew; Escoubet, C. Philippe (2010). Laakso, H.; et al. (eds.). The Cluster Active Archive – Studying the Earth's Space Plasma Environment. Astrophysics and Space Science Proceedings. Vol. 11. Astrophys. & Space Sci. Proc. series, Springer. pp. 1–489. Bibcode:2010ASSP...11.....L. doi:10.1007/978-90-481-3499-1. ISBN   978-90-481-3498-4.{{cite book}}: |journal= ignored (help)
  157. Hietala, H.; et al. (2009). "Supermagnetosonic jets behind a collisionless quasiparallel shock". Physical Review Letters. 103 (24): 245001. arXiv: 0911.1687 . Bibcode:2009PhRvL.103x5001H. doi:10.1103/PhysRevLett.103.245001. PMID   20366203. S2CID   12557772.
  158. Zong, Q.-G.; et al. (2009). "Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt". Journal of Geophysical Research: Space Physics. 114 (A10): A10204. Bibcode:2009JGRA..11410204Z. doi: 10.1029/2009JA014393 .
  159. Dunlop, M.; et al. (2009). "Reconnection at High Latitudes: Antiparallel Merging". Physical Review Letters. 102 (7): 075005. Bibcode:2009PhRvL.102g5005D. doi:10.1103/PhysRevLett.102.075005. PMID   19257682.
  160. Sahraoui, F.; et al. (2009). "Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale". Physical Review Letters. 102 (23): 231102. Bibcode:2009PhRvL.102w1102S. doi:10.1103/PhysRevLett.102.231102. hdl: 11603/30758 . PMID   19658919.
  161. Dandouras, I.; et al. (2009). "Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft". Advances in Space Research. 43 (23): 618–623. Bibcode:2009AdSpR..43..618D. doi: 10.1016/j.asr.2008.10.015 .
  162. Yordanova, E.; et al. (2008). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Physical Review Letters. 100 (20): 205003. Bibcode:2008PhRvL.100t5003Y. doi:10.1103/PhysRevLett.100.205003. PMID   18518544.
  163. Engwall, E.; et al. (2009). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Nature Geoscience. 2 (1): 24–27. Bibcode:2009NatGe...2...24E. doi:10.1038/ngeo387.
  164. Eastwood, J.; et al. (2008). "The science of space weather". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366 (1884): 4489–4500. Bibcode:2008RSPTA.366.4489E. doi:10.1098/rsta.2008.0161. PMID   18812302. S2CID   49410.
  165. Kronberg, E.; et al. (2008). "Comparison of periodic substorms at Jupiter and Earth". Journal of Geophysical Research: Space Physics. 113 (A4): A04212. Bibcode:2008JGRA..113.4212K. doi: 10.1029/2007JA012880 .
  166. Nilsson, H.; et al. (2008). "An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow". Annales Geophysicae. 26 (1): 145–157. Bibcode:2008AnGeo..26..145N. doi: 10.5194/angeo-26-145-2008 .
  167. He, J.-S.; et al. (2008). "Electron trapping around a magnetic null" (PDF). Geophysical Research Letters. 35 (14): L14104. Bibcode:2008GeoRL..3514104H. doi: 10.1029/2008GL034085 .
  168. He, J.-S.; et al. (2008). "A magnetic null geometry reconstructed from Cluster spacecraft observations". Journal of Geophysical Research: Space Physics. 113 (A5): A05205. Bibcode:2008JGRA..113.5205H. doi: 10.1029/2007JA012609 .
  169. Mutel, R.L.; et al. (2008). "Cluster multispacecraft determination of AKR angular beaming". Geophysical Research Letters. 35 (7): L07104. arXiv: 0803.0078 . Bibcode:2008GeoRL..35.7104M. doi:10.1029/2008GL033377. S2CID   18143005.
  170. Wei, X.H.; et al. (2007). "Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth's magnetotail". Journal of Geophysical Research: Space Physics. 112 (A10): A10225. Bibcode:2007JGRA..11210225W. doi: 10.1029/2006JA011771 .
  171. Trines, R.; et al. (2007). "Spontaneous Generation of Self-Organized Solitary Wave Structures at Earth's Magnetopause" (PDF). Physical Review Letters. 99 (20): 205006. Bibcode:2007PhRvL..99t5006T. doi:10.1103/PhysRevLett.99.205006. PMID   18233152.
  172. Phan, T.; et al. (2007). "Evidence for an Elongated (>60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection". Physical Review Letters. 99 (25): 255002. Bibcode:2007PhRvL..99y5002P. doi:10.1103/PhysRevLett.99.255002. PMID   18233527.
  173. Grigorenko, E.E.; et al. (2007). "Spatial-Temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail". Journal of Geophysical Research: Space Physics. 112 (A5): A05218. Bibcode:2007JGRA..112.5218G. doi: 10.1029/2006JA011986 .
  174. Lavraud, B.; et al. (2007). "Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?". Geophysical Research Letters. 34 (14): L14102. Bibcode:2007GeoRL..3414102L. doi:10.1029/2007GL030024. hdl: 2027.42/94743 . S2CID   40387871.
  175. Rosenqvist, L.; et al. (2007). "An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection". Annales Geophysicae. 25 (2): 507–517. Bibcode:2007AnGeo..25..507R. doi: 10.5194/angeo-25-507-2007 .
  176. Lui, A.T.Y.; et al. (2007). "Breakdown of the frozen-in condition in the Earth's magnetotail". Journal of Geophysical Research: Space Physics. 112 (A4): A04215. Bibcode:2007JGRA..112.4215L. doi: 10.1029/2006JA012000 .
  177. Haaland, S.E.; et al. (2007). "High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence". Annales Geophysicae. 25 (1): 239–253. Bibcode:2007AnGeo..25..239H. doi: 10.5194/angeo-25-239-2007 .
  178. Förster, M.; et al. (2007). "High-latitude plasma convection from Cluster EDI: variances and solar wind correlations". Annales Geophysicae. 25 (7): 1691–1707. Bibcode:2007AnGeo..25.1691F. doi: 10.5194/angeo-25-1691-2007 .
  179. Sergeev, V.; Semenov, V.; Kubyshkina, M.; Ivanova, V.; Baumjohann, W.; Nakamura, R.; Penz, T.; Runov, A.; Zhang, T. L.; Glassmeier, K.-H.; Angelopoulos, V.; Frey, H.; Sauvaud, J.-A.; Daly, P.; Cao, J. B.; Singer, H.; Lucek, E. (2007). "Observation of repeated intense near-Earth reconnection on closed field lines with Cluster, Double Star, and other spacecraft". Geophysical Research Letters. 34 (2): L02103. Bibcode:2007GeoRL..34.2103S. doi: 10.1029/2006GL028452 .
  180. Rae, J.; et al. (2005). "Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval" (PDF). Journal of Geophysical Research. 110 (A12): A12211. Bibcode:2005JGRA..11012211R. doi: 10.1029/2005JA011007 .
  181. Zong, Q.-G.; et al. (2007). "Ultralow frequency modulation of energetic particles in the dayside magnetosphere". Geophysical Research Letters. 34 (12): L12105. Bibcode:2007GeoRL..3412105Z. doi: 10.1029/2007GL029915 .
  182. Xiao, C.J.; et al. (2007). "Satellite observations of separator-line geometry of three-dimensional magnetic reconnection". Nature Physics. 3 (9): 603–607. arXiv: 0705.1021 . Bibcode:2007NatPh...3..609X. doi:10.1038/nphys650. S2CID   119637705.
  183. Lobzin, V.V.; et al. (2007). "Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations" (PDF). Geophysical Research Letters. 34 (5): L05107. Bibcode:2007GeoRL..34.5107L. doi: 10.1029/2006GL029095 .
  184. Lui, A.T.Y.; et al. (2006). "Cluster observation of plasma flow reversal in the magnetotail during a substorm". Annales Geophysicae. 24 (7): 2005–2013. Bibcode:2006AnGeo..24.2005L. doi: 10.5194/angeo-24-2005-2006 .
  185. Retinò, A.; et al. (2007). "In situ evidence of magnetic reconnection in turbulent plasma". Nature Physics. 3 (4): 236–238. Bibcode:2007NatPh...3..236R. doi: 10.1038/nphys574 .
  186. Henderson, P.; et al. (2006). "Cluster PEACE observations of electron pressure tensor divergence in the magnetotail" (PDF). Geophysical Research Letters. 33 (22): L22106. Bibcode:2006GeoRL..3322106H. doi: 10.1029/2006GL027868 .
  187. Marklund, G.; et al. (2007). "Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer". Journal of Geophysical Research: Space Physics. 112 (A1): n/a. Bibcode:2007JGRA..112.1208M. doi: 10.1029/2006JA011804 .
  188. Nykyri, K.; et al. (2006). "Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank". Annales Geophysicae. 24 (10): 2619–2643. Bibcode:2006AnGeo..24.2619N. doi: 10.5194/angeo-24-2619-2006 .
  189. Darrouzet, F.; et al. (2006). "Spatial gradients in the plasmasphere from Cluster". Geophysical Research Letters. 33 (8): L08105. Bibcode:2006GeoRL..33.8105D. doi: 10.1029/2006GL025727 .
  190. Darrouzet, F.; et al. (2006). "Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations". Annales Geophysicae. 24 (6): 1737–1758. Bibcode:2006AnGeo..24.1737D. doi: 10.5194/angeo-24-1737-2006 .
  191. Marchaudon, A.; et al. (2005). "Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere". Annales Geophysicae. 23 (8): 2877–2887. Bibcode:2005AnGeo..23.2877M. doi: 10.5194/angeo-23-2877-2005 .
  192. Cao, J.B.; et al. (2006). "Joint observations by Cluster satellites of bursty bulk flows in the magnetotail". Journal of Geophysical Research. 111 (A4): A04206. Bibcode:2006JGRA..111.4206C. doi: 10.1029/2005JA011322 .
  193. Xiao, C.J.; et al. (2006). "In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail". Nature Physics. 2 (7): 478–483. arXiv: physics/0606014 . Bibcode:2006NatPh...2..478X. doi:10.1038/nphys342. S2CID   18921009.
  194. Parks, G.; et al. (2006). "Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock". Physics of Plasmas. 13 (5): 050701. Bibcode:2006PhPl...13e0701P. doi:10.1063/1.2201056. hdl: 11603/30741 .
  195. Mozer, F.; et al. (2005). "Spatial gradients in the plasmasphere from Cluster". Geophysical Research Letters. 32 (24): L24102. Bibcode:2005GeoRL..3224102M. doi: 10.1029/2005GL024092 .
  196. Zhang, T.L..; et al. (2005). "Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004". Annales Geophysicae. 23 (8): 2909–2914. Bibcode:2005AnGeo..23.2909Z. doi: 10.5194/angeo-23-2909-2005 .
  197. Sahraoui, F.; et al. (2006). "Anisotropic turbulent spectra in the terrestrial magnetosheath: Cluster observations" (PDF). Physical Review Letters. 96 (7): 075002. Bibcode:2006PhRvL..96g5002S. doi:10.1103/PhysRevLett.96.075002. PMID   16606099.
  198. Phan, T.; et al. (2006). "A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind". Nature. 439 (7073): 175–178. Bibcode:2006Natur.439..175P. doi:10.1038/nature04393. PMID   16407946. S2CID   4381256.
  199. Horne, R.B.; et al. (2005). "Wave acceleration of electrons in the Van Allen radiation belts". Nature. 437 (7056): 227–230. Bibcode:2005Natur.437..227H. doi:10.1038/nature03939. PMID   16148927. S2CID   1530882.
  200. Sundkvist, D.; et al. (2005). "In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence". Nature. 436 (7052): 825–828. Bibcode:2005Natur.436..825S. doi:10.1038/nature03931. PMID   16094363. S2CID   4430255.
  201. Vallat, C.; et al. (2005). "First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data". Annales Geophysicae. 23 (5): 1849–1865. Bibcode:2005AnGeo..23.1849V. doi: 10.5194/angeo-23-1849-2005 .
  202. Øieroset, M.; et al. (2005). "Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003". Geophysical Research Letters. 32 (12): L12S07. Bibcode:2005GeoRL..3212S07O. doi: 10.1029/2004GL021523 .
  203. Li, W.; et al. (2005). "Plasma sheet formation during long period of northward IMF". Geophysical Research Letters. 32 (12): L12S08. Bibcode:2005GeoRL..3212S08L. doi: 10.1029/2004GL021524 .
  204. Louarn, P.; et al. (2004). "Cluster observations of complex 3D magnetic structures at the magnetopause". Geophysical Research Letters. 31 (19): L19805. Bibcode:2004GeoRL..3119805L. doi: 10.1029/2004GL020625 .
  205. Nakamura, R.; et al. (2004). "Spatial scale of high-speed flows in the plasma sheet observed by Cluster". Geophysical Research Letters. 31 (9): L09804. Bibcode:2004GeoRL..31.9804N. doi: 10.1029/2004GL019558 .
  206. Knetter, T.; et al. (2004). "Four-point discontinuity observations using Cluster magnetic field data: A statistical survey". Journal of Geophysical Research. 109 (A6): A06102. Bibcode:2004JGRA..109.6102K. doi: 10.1029/2003JA010099 .
  207. Décréau, P.; et al. (2004). "Observation of continuum radiations from the Cluster fleet: first results from direction finding". Annales Geophysicae. 22 (7): 2607–2624. Bibcode:2004AnGeo..22.2607D. doi: 10.5194/angeo-22-2607-2004 .
  208. Hasegawa, H.; et al. (2004). "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices". Nature. 430 (7001): 755–758. Bibcode:2004Natur.430..755H. doi:10.1038/nature02799. PMID   15306802. S2CID   4335442.
  209. Sergeev, V.; et al. (2004). "Orientation and propagation of current sheet oscillations". Geophysical Research Letters. 31 (5): L05807. Bibcode:2004GeoRL..31.5807S. doi: 10.1029/2003GL019346 .
  210. Zong, Q.-G.; et al. (2004). "Triple cusps observed by Cluster-Temporal or spatial effect?". Geophysical Research Letters. 31 (9): L09810. Bibcode:2004GeoRL..31.9810Z. doi: 10.1029/2003GL019128 . S2CID   129833434.
  211. O. Alexandrova, A. Mangeney, M. Maksimovic, C. Lacombe, N. Cornilleau-Wehrlin, E. A. Lucek, P. M. E. Décréau, J.-M. Bosqued, P. Travnicek, A. N. Fazakerley; et al. (2004). "Cluster observations of finite amplitude Alfvén waves and small-scale magnetic filaments downstream of a quasi-perpendicular shock". Journal of Geophysical Research: Space Physics. 109 (A5): A05207. Bibcode:2004JGRA..109.5207A. doi: 10.1029/2003JA010056 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  212. Bale, S.; et al. (2003). "Density-Transition Scale at Quasiperpendicular Collisionless Shocks". Physical Review Letters. 91 (26): 265004. Bibcode:2003PhRvL..91z5004B. doi:10.1103/PhysRevLett.91.265004. PMID   14754061.
  213. Frey, H.; et al. (2003). "Continuous magnetic reconnection at Earth's magnetopause". Nature. 426 (6966): 533–537. Bibcode:2003Natur.426..533F. doi:10.1038/nature02084. PMID   14654835. S2CID   4421604.
  214. Runov, A.; et al. (2003). "Current sheet structure near magnetic X-line observed by Cluster". Geophysical Research Letters. 30 (10): 1579. Bibcode:2003GeoRL..30.1579R. doi: 10.1029/2002GL016730 .
  215. Phan, T.; et al. (2003). "Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF". Geophysical Research Letters. 30 (10): n/a. Bibcode:2003GeoRL..30.1509P. doi: 10.1029/2003GL016885 . S2CID   117920602.
  216. Runov, A.; et al. (2003). "Cluster observation of a bifurcated current sheet". Geophysical Research Letters. 30 (2): 1036. Bibcode:2003GeoRL..30.1036R. doi: 10.1029/2002GL016136 . S2CID   121878799.
  217. Dunlop, M.; et al. (2002). "Four-point Cluster application of magnetic field analysis tools: The Curlometer". Journal of Geophysical Research. 107 (A11): 1384. Bibcode:2002JGRA..107.1384D. doi: 10.1029/2001JA005088 .
  218. Nakamura, R.; et al. (2002). "Fast flow during current sheet thinning" (PDF). Geophysical Research Letters. 29 (23): 2140. Bibcode:2002GeoRL..29.2140N. doi: 10.1029/2002GL016200 .
  219. Baker, D.N.; et al. (2002). "A telescopic and microscopic view of a magnetospheric substorm on 31 March 2001". Geophysical Research Letters. 29 (18): 1862. Bibcode:2002GeoRL..29.1862B. doi: 10.1029/2001GL014491 .
  220. Marklund, G.; et al. (2001). "Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere". Nature. 414 (6865): 724–727. Bibcode:2001Natur.414..724M. doi:10.1038/414724a. PMID   11742392. S2CID   4418541.
  221. Décréau, P.; et al. (2001). "Early results from the Whisper instrument on Cluster: an overview". Annales Geophysicae. 19 (10/12): 1241–1258. Bibcode:2001AnGeo..19.1241D. doi: 10.5194/angeo-19-1241-2001 .
  222. Paschmann, G.; S.J. Schwartz; C.P. Escoubet; S. Haal, eds. (2005). Outer Magnetospheric Boundaries: Cluster Results. reprinted from Space Sci. Rev., 118, 1–4, Springer, Berlin. pp. 1–434. Bibcode:2005ombc.book.....P.