Meteosat

Last updated
Meteosat First Generation satellite METEOSAT.gif
Meteosat First Generation satellite

The Meteosat series of satellites are geostationary meteorological satellites operated by EUMETSAT under the Meteosat Transition Programme (MTP) and the Meteosat Second Generation (MSG) program.

Contents

The MTP program was established to ensure the operational continuity between the end of the successful Meteosat Operational Programme in 1995 and Meteosat Second Generation (MSG), which came into operation at the start of 2004 using improved satellites. The MSG program will provide service until the MTG (Meteosat Third Generation) program takes over.

First generation

Satellites in the first generation Meteosat series [1]
SatelliteLaunch dateMission end
Meteosat-1 23 November 1977Imager failed in November 1979; data collection ended in 1984
Meteosat-2 10 June 1981Moved to graveyard orbit in December 1991 [2]
Meteosat-3 (Meteosat-P2)15 June 1988Retired in 1995
Meteosat-4 (MOP-1)19 April 1989Deactivated in November 1996.
Meteosat-5 (MOP-2)02 March 1991Decommissioned and placed into graveyard orbit in February 2007
Meteosat-6 (MOP-3)20 November 1993Continued data transmission service until late 2010 or in early 2011
Meteosat-7 (MTP)03 September 1997Placed into graveyard orbit in April 2017 [3]

The first generation of Meteosat satellites, Meteosat-1 to Meteosat-7, provided continuous and reliable meteorological observations from space to a large user community. Meteosat-1 to -7 have all now retired.

When operational, the Meteosat First Generation provided images every half-hour in three spectral channels (Visible, Infrared) and Water Vapour, via the Meteosat Visible and Infrared Imager (MVIRI) instrument. Until 1 February 2017, Meteosat-7 provided the primary imagery coverage over the Indian Ocean and provided a service relaying data from Argos Data Collection Platforms (DCP), such as buoys, in support of the Tsunami Warning System for the Indian Ocean. A range of processed meteorological products were also produced. [4] The last disseminated Meteosat-7 image was on 31 March 2017. Moving Meteosat-7 to its ultimate resting place in a graveyard orbit commenced on 3 April 2017 and the spacecraft final command sent on 11 April 2017.

The satellites were manufactured by a consortium COSMOS, with Aérospatiale in its Cannes Mandelieu Space Centre, as Prime, and included Matra, MBB, Selenia Spazio, Marconi Company.

They are 2.1 metres in diameter and 3.195 metres long. Its initial mass in orbit is 282 kg, and in orbit, the satellite spins at 100 rpm around its main axis. [5]

Second Generation ("MSG")

Meteosat Second Generation Meteosat Geostasjonaer satellitt.jpg
Meteosat Second Generation
Satellites in the second generation Meteosat series [6]
SatelliteLaunch dateMission end
Meteosat-8 (MSG-1)28-08-2002 22:45 UTCRetired 1 July 2022
Meteosat-9 (MSG-2)22-12-2005 22:33 UTCAvailability lifetime is until 2025
Meteosat-10 (MSG-3)05-07-2012 21:36 UTCAvailability lifetime is until 2030
Meteosat-11 (MSG-4)15-07-2015 21:05 UTCAvailability lifetime is until 2033

The contract for the second generation was awarded to Aérospatiale in its Cannes Mandelieu Space Centre (now Thales Alenia Space), with main subcontractors as Matra, Messerschmitt, Alenia.

Meteosat Second Generation was designed in response to user requirements to serve the needs of nowcasting applications and numerical weather prediction. In addition, the GERB instrument provides important data for climate monitoring and research.

The satellites are spin-stabilised like the previous generation, but with many design improvements. The more frequent and comprehensive data collected by MSG also aids the weather forecaster in the swift recognition and prediction of dangerous weather phenomena such as thunderstorms, fog, and explosive development of small, but intense, depressions, which can lead to devastating wind storms.

The MSG satellites are 3.2 m in diameter and 2.4 m high and spin anti-clockwise at 100 rpm [7] at an altitude of 36,000 km. [8]

On 29 January 2004 the first Meteosat Second Generation satellite MSG-1, renamed to Meteosat-8 once operational, commenced routine operations. In addition to the main optical payload SEVIRI (Spinning Enhanced Visible and Infrared Imager), Meteosat-8 also carries the secondary payload GERB (Geostationary Earth Radiation Budget) instrument.

The launch of MSG-2 (renamed to Meteosat-9) took place on 21 December 2005. The launch of MSG-3 (renamed to Meteosat-10) took place on 5 July 2012.

The MSG control centre in Darmstadt EUMETSAT MSG control.jpg
The MSG control centre in Darmstadt

Meteosat-8 is stationed over the Indian Ocean, arriving at 41.5°E on 21 September 2016 and it took over as prime Indian Ocean Data Coverage (IODC) spacecraft on 1 February 2017 (replacing Meteosat-7). Meteosat-8 was retired from operational service on 1 July 2022 and finally decommissioned on 13 October 2022 after twenty years in orbit. The spacecraft was disposed of in compliance with ISO-24113 guidelines (although not designed with this in mind) having been raised 740km above the geostationary ring and spun down to 20rpm. The propulsion system was then passivated and the satellite deactivated.

Meteosat-9 is also stationed over the Indian Ocean, arriving at 45.5°E on 20 April 2022 and it took over as prime IODC spacecraft on 1 June 2022 (replacing Meteosat-8).

Meteosat-10 and -11 are located over Africa with various differences in operational configuration. Since 20 March 2018, Meteosat-10 provides an operational European 'rapid scan' mode service (the MSG RSS service first commenced in May 2008), with images of Europe every 5 minutes. Since 20 February 2018, Meteosat-11 provides the main full Earth imagery service over Europe and Africa (with images every 15-minutes). [9]

MSG-4 was successfully launched into space on 15 July 2015 at 18:42 local time on top an Ariane 5 Rocket from the Guiana Space Centre in Kourou, French Guiana. Like MSG-1, MSG-2 and MSG-3, MSG-4 was launched by Arianespace. The MSG-4 commissioning was successfully completed in December 2015 at which time the spacecraft was placed into in-orbit storage as planned, and renamed to Meteosat-11.

Secondary Payloads

Meteosat-8, -9, -10, and -11 each carry a GERB Instrument, DCP capable service equipment and a Search and Rescue signal Processor (SARP) that is capable of detecting 406 MHz distress signals from emergency position-indicating radiobeacon stations. [10] For SARP, see more under Cospas-Sarsat.

Third Generation ("MTG")

Artist's rendering of Meteosat Third Generation Meteosat Third Generation weather satellites ESA24390147.jpeg
Artist's rendering of Meteosat Third Generation
Satellites in the third generation Meteosat series [11]
SatelliteLaunch dateMission end
Meteosat-12 (MTG-I1)13-12-2022 20:30 UTCTBD

Considering the long development cycle for a new observational space system, EUMETSAT has been working on the definition and the planning for a Meteosat Third Generation (MTG) system since the year 2000. MTG components providing continuity of MSG services need to be available before the end of the nominal lifetime of MSG. MTG preparatory activities started end of 2000 in cooperation with the European Space Agency (ESA), following the decision of the EUMETSAT Council to proceed with a Post-MSG User Consultation Process. The process is aimed at capturing the foreseeable needs of users of EUMETSAT's satellite data in the 2015-2025 timeframe. [12]

On 19 March 2010, ESA chose Thales Alenia Space for a final negotiation leading to a contract to be signed during June. [13]

On 22 June 2010, EUMETSAT confirmed the choice of Thales Alenia Space. [14]

On 24 February 2012, the development contract between ESA and Thales Alenia Space was signed by Mr. Liebig and Mr. Seznec. Thales Alenia Space leads the industrial consortium that is now building the MTG family. Along with being the prime contractor, Thales Alenia Space is responsible for the MTG-I imaging satellite, including the primary payload, the Flexible Combined Imager. Bremen-based OHB is responsible for the MTG-S satellites and provision of the common satellite platforms, supported by Astrium GmbH as the System Architect.

A total of 6 satellites are being developed under the MTG contract. Four MTG-I imaging satellites, as well as two MTG-S sounder satellites. The launch of the first MTG satellite, Meteosat-12 (MTG-I1), occurred on 13 December 2022, at 20:30 UTC. [15] [16]

Related Research Articles

<span class="mw-page-title-main">Ariane 5</span> European heavy-lift space launch vehicle (1996–2023)

Ariane 5 is a retired European heavy-lift space launch vehicle developed and operated by Arianespace for the European Space Agency (ESA). It was launched from the Centre Spatial Guyanais (CSG) in French Guiana. It was used to deliver payloads into geostationary transfer orbit (GTO), low Earth orbit (LEO) or further into space. The launch vehicle had a streak of 82 consecutive successful launches between 9 April 2003 and 12 December 2017. Since 2014, Ariane 6, a direct successor system, is in development.

<span class="mw-page-title-main">Guiana Space Centre</span> French and European spaceport in French Guiana

The Guiana Space Centre, also called Europe's Spaceport, is a European spaceport to the northwest of Kourou in French Guiana, a region of France in South America. Kourou is located approximately 310 mi (500 km) north of the equator at a latitude of 5°. In operation since 1968, it is a suitable location for a spaceport because of its equatorial location and open sea to the east.

<span class="mw-page-title-main">Weather satellite</span> Type of satellite designed to record the state of the Earths atmosphere

A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting, or geostationary.

<span class="mw-page-title-main">Geostationary Earth Radiation Budget</span>

The Geostationary Earth Radiation Budget (GERB) is an instrument aboard EUMETSAT's Meteosat Second Generation geostationary satellites designed to make accurate measurements of the Earth radiation budget.

<span class="mw-page-title-main">EUMETSAT</span> European intergovernmental organisation

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is an intergovernmental organisation created through an international convention agreed by a current total of 30 European Member States.

<span class="mw-page-title-main">Spacebus</span> Brand of satellite bus

Spacebus is a satellite bus produced at the Cannes Mandelieu Space Center in France by Thales Alenia Space. Spacebuses are typically used for geostationary communications satellites, and seventy-four have been launched since development started in the 1980s. Spacebus was originally produced by Aérospatiale and later passed to Alcatel Alenia Space. In 2006, it was sold to Thales Group as Thales Alenia Space.

<span class="mw-page-title-main">Thales Alenia Space</span> Satellite manufacturer

Thales Alenia Space is a joint venture between the French technology corporation Thales Group (67%) and Italian defense conglomerate Leonardo (33%). The company is headquartered in Cannes, France.

The Regional African Satellite Communication Organization (RASCOM) will provide telecommunication services, direct TV broadcast services and Internet access in rural areas of Africa. Under an agreement with RASCOM, RascomStar-QAF will implement RASCOM's first 14 communications satellite project. This joint African project is expected to lower the continent's dependency on international satellite networks such as Intelsat.

AMC-21, or GE-21, is an American communications satellite operated by SES S.A., formerly SES World Skies and SES Americom. It was launched in August 2008 and is expected to remain in service for approximately 15 years. It is currently located at 125° West longitude.

<span class="mw-page-title-main">Meteosat 8</span>

Meteosat 8 is a weather satellite, also known as MSG 1. The Meteosat series are operated by EUMETSAT under the Meteosat Transition Programme (MTP) and the Meteosat Second Generation (MSG) program. Notable for imaging the first meteor to be predicted to strike the Earth, 2008 TC3. Launched 28 Aug 2002 by an Ariane V155, this European Meteorology satellite is in a Geostationary orbit.

SEOSat-Ingenio, was a Spanish project to produce a satellite capable of providing wide-field imagery ensuring a repeat cycle of 38 days at 2.5 metre panchromatic resolution and 10 metre colour resolution, from a Sun-synchronous polar orbit; it was Spain's first optical imaging satellite. The satellite was part of the Spanish Earth Observation Satellite program. The mission was funded by Spain's Centre for the Development of Industrial Technology (CDTI). SEOSat-Ingenio information was to be used by various Spanish civil, institutional or government users. However, under the Copernicus Programme of the European Union, it was also accessible to other European users, as well as to the Group on Earth observation of the Global Observing System of Earth.

Eutelsat 21B, previously known as Eutelsat W6A, is a French communications satellite. Operated by Eutelsat, it provides direct to home broadcasting services from geostationary orbit at a longitude of 21.5 degrees east. It replaced the Eutelsat 21A spacecraft which was launched in 1999.

<span class="mw-page-title-main">Ariane 6</span> European space launch vehicle

Ariane 6 is a European expendable launch system developed by ArianeGroup on behalf of the European Space Agency (ESA). It replaces the Ariane 5, as part of the Ariane launch vehicle family. The stated motivation for Ariane 6 was to halve the cost compared to Ariane 5, and increase the capacity for the number of launches per year.

<span class="mw-page-title-main">Inmarsat-4A F4</span> Geostationary communications satellite

Inmarsat-4A F4, also known as Alphasat and Inmarsat-XL, is a large geostationary communications I-4 satellite operated by United Kingdom-based Inmarsat in partnership with the European Space Agency. Launched in 2013, it is used to provide mobile communications to Africa and parts of Europe and Asia.

<span class="mw-page-title-main">Sentinel-4</span> Earth observation satellite

Sentinel-4 is a European Earth observation mission developed to support the European Union Copernicus Programme for monitoring the Earth. It focuses on monitoring of trace gas concentrations and aerosols in the atmosphere to support operational services covering air-quality near-real time applications, air-quality protocol monitoring and climate protocol monitoring. The specific objective of Sentinel-4 is to support this with a high revisit time over Europe.

SES-17, is a high throughput all electric geostationary communications satellite owned and operated by SES S.A., and designed and manufactured by Thales Alenia Space. Launched on 24 October 2021 from Centre Spatial Guyanais (CSG), in Kourou, French Guiana by an Ariane 5ECA launch vehicle, SES-17 was positioned at 67.1° west in May 2022 and, after testing, became fully operational in June 2022.

ELA-4, is a launch pad and associated facilities at the Centre Spatial Guyanais in French Guiana located along the Route de l'Espace in the Roche Christine site, between ELA-3 and ELS launch facilities. The complex is composed of a launch pad with mobile gantry, an horizontal assembly building and a dedicated launch operations building. ELA-4 is operated by Arianespace as part of the Ariane 6 program. As of November 2022 the first launch is scheduled for the fourth quarter of 2023.

<span class="mw-page-title-main">Eutelsat Konnect</span> Eutelsat telecommunications satellite

Eutelsat Konnect is a geostationary communications satellite operated by Eutelsat. The satellite was designed and manufactured by Thales Alenia Space on the Spacebus NEO 100 platform, and was launched on 16 January 2020 on an Ariane 5 ECA. The satellite provides broadband internet and communications coverage to Europe and Sub-Saharan Africa.

References

  1. "Meteosat First Generation - eoPortal Directory - Satellite Missions".
  2. "Meteosat" (PDF). Archived (PDF) from the original on 2021-07-03. Retrieved 2021-07-03.
  3. "The final journey of Meteosat-7 — EUMETSAT". Archived from the original on 2017-06-13. Retrieved 2019-04-02.
  4. "Indian Ocean Data Coverage service". Archived from the original on 2017-12-01. Retrieved 2018-11-29.
  5. "Meteosat First Generation Design". Archived from the original on 2016-03-18. Retrieved 2016-03-18.
  6. "Meteosat- EUMETSAT". Archived from the original on 2013-10-17.
  7. Meteosat Second Generation Design [ permanent dead link ]
  8. "EUMETSAT Satellite Orbits". Archived from the original on 2016-03-09. Retrieved 2016-03-18.
  9. "Meteosat series". EUMETSAT. 15 April 2020. Retrieved 2 June 2022.
  10. "Current Space Segment Status and SAR Payloads". Archived from the original on 2012-11-30. Retrieved 2012-12-03.
  11. "Meteosat Third Generation (MTG) - EUMETSAT". 22 May 2020.
  12. "Meteosat Third Generation". Archived from the original on 2016-03-22. Retrieved 2016-03-18.
  13. ESA and Thales Alenia Space enter negotiations for MTG, ESA Press release, March 19, 2010, online www.esa.int
  14. "EUMETSAT 70th council puts MTG on tracks". Archived from the original on 2016-03-26. Retrieved 2016-03-18.
  15. Arianespace [@Arianespace] (November 25, 2022). "[5/5] 🗓️ The new targeted launch date for #VV22 now is December 20; 🗓️ The new targeted launch date for #VA259 –initially scheduled for December 14- now is December 13" (Tweet) via Twitter.
  16. "Ariane-5-Missionen" [Ariane-5 Missions]. DLR (in German). Retrieved 20 October 2022.