Nowcasting (meteorology)

Last updated
Forecast (blue lines) by << AutoNowcaster >> for a thunderstorm line Nowcast ConvectiveWXfcst ncwf2-310W.jpg
Forecast (blue lines) by « AutoNowcaster » for a thunderstorm line

Nowcasting is weather forecasting on a very short term mesoscale period of up to 2 hours, according to the World Meteorological Organization, and up to six hours, according to other authors in the field. [1] [2] This forecast is an extrapolation in time of known weather parameters, including those obtained by means of remote sensing, using techniques that take into account a possible evolution of the air mass. This type of forecast therefore includes details that cannot be solved by numerical weather prediction (NWP) models running over longer forecast periods.

Contents

Principle

Nowcasting in meteorology uses surface weather station data, wind profiler data, and any other weather data available to initialize the current weather situation and forecast by extrapolation for a period of 0 to 6 hours. In this time range it is possible to forecast small features such as individual storms with reasonable accuracy. Weather radar echoes and satellite data, giving cloud coverage, are particularly important in nowcasting because they are very detailed and pick out the size, shape, intensity, speed and direction of movement of individual features of weather on a continuous basis and a vastly better resolution than surface weather stations. [3]

This used to be a simple extrapolation by a forecaster for the following few hours. [3] But with the development of mesoscale numerical weather models, these information can be ingested into an expert system to produce a much better forecast combining numerical weather prediction and local effects not normally possible to be known beforehand. Different research groups, public and private, have developed such programs.

For instance, the French weather service, Météo-France, is using a software, named ASPIC to extrapolate to a fine scale the areas of precipitation. [4] Other examples are AutoNowcaster which has been developed by UCAR to predict short term motion and evolution of thunderstorms, [5] 3D nowcasting an experimental technology by the RIKEN Advanced Institute for Computational Science [6] and private firms like Tomorrow.io (formerly ClimaCell) using its proprietary HyperCast software for nowcasting precipitation type and intensity at 300-500 m geospatial resolution [7]

Usage

Data extrapolation, including development or dissipation, can be used to find the likely location of a moving weather system. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river etc. Depending on the area of built-up space, drainage and land-use in general, a forecast warning may be issued.

Nowcasting is thus used for public safety, weather sensitive operation like snow removal, for aviation weather forecasts in both the terminal and en-route environment, marine safety, water and power management, off-shore oil drilling, construction industry and leisure industry. The strength of nowcasting lies in the fact that it provides location-specific forecasts of storm initiation, growth, movement and dissipation, which allows for specific preparation for a certain weather event by people in a specific location. [3]

Nowcasting is recognized as having enormous value in desertic areas such a in sub-Saharan Africa, where rapidly changing weather conditions can have a dramatic impact on populations and economic activity, which can be mitigated by early warning. [8]

Research

The short term forecast is as old as weather forecasting itself. During the nineteenth century, the first modern meteorologists were using extrapolation methods for predicting the movement of low pressure systems and anticyclones on surface maps. The researchers subsequently applied the laws of fluid dynamics to the atmosphere and developed the NWP as we know it today. However, the data resolution and parameterization of meteorological primitive equations still leave uncertainty about the small-scale projections, in time and space.

The arrival of remote sensing means, such as radar and satellite, and more rapid development of the computer, greatly help to fill that gap. For instance, digital radar systems made it possible to track thunderstorms, providing users with the ability to acquire detailed information of each storm tracked, since the late 1980s. They are first identified by matching precipitation raw data to a set of preprogrammed characteristics into the system, including signs of organization in the horizontal and continuity in the vertical. [9] Once the thunderstorm cell is identified, speed, distance covered, direction, and Estimated Time of Arrival (ETA) are all tracked and recorded to be utilized later.

In 2017, the arrival of passive sensing means, such as wireless networks, helped progress nowcasting even further. It became possible to receive inputs every minute and achieve greater accuracy in short-term forecasting.

Several countries have developed nowcasting programs as previously mentioned. The World Meteorological Organization (WMO) supports these efforts and held test campaigns of such systems at various occasions. [10] For example, during the Olympic Games in Sydney and Beijing, several countries were invited to use their software to support the Games. [11] [12] [13]

Several scientific conferences addressing the topic. In 2009, WMO has even organized a symposium devoted to Nowcasting. [14]

Related Research Articles

<span class="mw-page-title-main">Hail</span> Form of solid precipitation

Hail is a form of solid precipitation. It is distinct from ice pellets, though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fall in cold weather, while hail growth is greatly inhibited during low surface temperatures.

<span class="mw-page-title-main">Thunderstorm</span> Storm characterized by lightning and thunder

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.

<span class="mw-page-title-main">Weather forecasting</span> Science and technology application

Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th century.

<span class="mw-page-title-main">National Weather Service</span> U.S. forecasting agency of the National Oceanic and Atmospheric Administration

The National Weather Service (NWS) is an agency of the United States federal government that is tasked with providing weather forecasts, warnings of hazardous weather, and other weather-related products to organizations and the public for the purposes of protection, safety, and general information. It is a part of the National Oceanic and Atmospheric Administration (NOAA) branch of the Department of Commerce, and is headquartered in Silver Spring, Maryland, within the Washington metropolitan area. The agency was known as the United States Weather Bureau from 1890 until it adopted its current name in 1970.

<span class="mw-page-title-main">METAR</span> Format for weather reports commonly used in aviation

METAR is a format for reporting weather information. A METAR weather report is predominantly used by aircraft pilots, and by meteorologists, who use aggregated METAR information to assist in weather forecasting. Today, according to the advancement of technology in civil aviation, the METAR is sent as IWXXM model.

<span class="mw-page-title-main">Weather radar</span> Radar used to locate and monitor meteorological conditions

Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type. Modern weather radars are mostly pulse-Doppler radars, capable of detecting the motion of rain droplets in addition to the intensity of the precipitation. Both types of data can be analyzed to determine the structure of storms and their potential to cause severe weather.

The National Severe Storms Laboratory (NSSL) is a National Oceanic and Atmospheric Administration (NOAA) weather research laboratory under the Office of Oceanic and Atmospheric Research. It is one of seven NOAA Research Laboratories (RLs).

<span class="mw-page-title-main">Danish Meteorological Institute</span> Danish national weather forecasting service

The Danish Meteorological Institute is the official Danish meteorological institute, administrated by the Ministry of Climate, Energy and Utilities. It makes weather forecasts and observations for Denmark, Greenland, and the Faroe Islands.

<span class="mw-page-title-main">Atmospheric model</span> Mathematical model of atmospheric motions

In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes, heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as tornadoes and boundary layer eddies, sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either global, covering the entire Earth, or regional (limited-area), covering only part of the Earth. The different types of models run are thermotropic, barotropic, hydrostatic, and nonhydrostatic. Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed.

<span class="mw-page-title-main">ARMOR Doppler Weather Radar</span>

ARMOR Doppler weather radar is a C-Band, Dual-Polarimetric Doppler Weather Radar, located at the Huntsville International Airport in Huntsville, Alabama. The radar is a collaborative effort between WHNT-TV and the University of Alabama in Huntsville. Live data for the radar is only available to a limited audience, such as UAH employees and NWS meteorologists. All ARMOR data is archived at the National Space Science and Technology Center located on the UAH campus.

In weather forecasting, model output statistics (MOS) is a multiple linear regression technique in which predictands, often near-surface quantities, are related statistically to one or more predictors. The predictors are typically forecasts from a numerical weather prediction (NWP) model, climatic data, and, if applicable, recent surface observations. Thus, output from NWP models can be transformed by the MOS technique into sensible weather parameters that are familiar to a layperson.

<span class="mw-page-title-main">Quantitative precipitation forecast</span> Expected amount of melted precipitation

The quantitative precipitation forecast is the expected amount of melted precipitation accumulated over a specified time period over a specified area. A QPF will be created when precipitation amounts reaching a minimum threshold are expected during the forecast's valid period. Valid periods of precipitation forecasts are normally synoptic hours such as 00:00, 06:00, 12:00 and 18:00 GMT. Terrain is considered in QPFs by use of topography or based upon climatological precipitation patterns from observations with fine detail. Starting in the mid-to-late 1990s, QPFs were used within hydrologic forecast models to simulate impact to rivers throughout the United States. Forecast models show significant sensitivity to humidity levels within the planetary boundary layer, or in the lowest levels of the atmosphere, which decreases with height. QPF can be generated on a quantitative, forecasting amounts, or a qualitative, forecasting the probability of a specific amount, basis. Radar imagery forecasting techniques show higher skill than model forecasts within 6 to 7 hours of the time of the radar image. The forecasts can be verified through use of rain gauge measurements, weather radar estimates, or a combination of both. Various skill scores can be determined to measure the value of the rainfall forecast.

Convective storm detection is the meteorological observation, and short-term prediction, of deep moist convection (DMC). DMC describes atmospheric conditions producing single or clusters of large vertical extension clouds ranging from cumulus congestus to cumulonimbus, the latter producing thunderstorms associated with lightning and thunder. Those two types of clouds can produce severe weather at the surface and aloft.

<span class="mw-page-title-main">Outline of meteorology</span> Overview of and topical guide to meteorology

The following outline is provided as an overview of and topical guide to the field of Meteorology.

<span class="mw-page-title-main">GRLevelX</span>

GRLevelX is a suite of data processing and display programs developed by Gibson Ridge Software, LLC (GRS), to view weather radar data. It went on the market in March 2005. It comes in three versions, all of which ingest raw data: GRLevel2 and GRLevel2 Analyst Edition for viewing Level II data of the National Weather Service (NWS), and GRLevel3 for viewing Level III data. All programs are capable of rendering dual polarization data.

<span class="mw-page-title-main">Solar power forecasting</span> Power forecasting

Solar power forecasting is the process of gathering and analyzing data in order to predict solar power generation on various time horizons with the goal to mitigate the impact of solar intermittency. Solar power forecasts are used for efficient management of the electric grid and for power trading.

The following is a glossary of tornado terms. It includes scientific as well as selected informal terminology.

3D nowcasting refers to an experimental technology of nowcasting in meteorology that uses a rapid phased-array radar to predict precipitation several minutes in advance. The phased-array radar takes a scan of the sky in anywhere from 10–30 seconds, viewing 100 vertical levels in a range of 60 km. thus providing inputs every 30 seconds. It divides the sky into several "layers" and uses a new algorithm for forecasting very quickly. The models use the K computer, requiring a large amount of observational data, and a large amount of computational power. The radar produces 100 times more data than the conventional parabolic antenna radar.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

<span class="mw-page-title-main">Isztar Zawadzki</span> Argentinian, Canadian and Polish meteorologist

Isztar Zawadzki was a Canadian meteorologist, born in Poland and raised in Argentina. Professor at the McGill Atmospheric and Oceanic Sciences department in Montreal, Québec, he specialized in radar meteorology, a field where he has made important contributions.

References

  1. World Meteorological Organization (2009). "Nowcast". Eumetcal. Archived from the original on June 5, 2016. Retrieved May 9, 2016.
  2. Translation Bureau. "Nowcasting". Termium Plus. Public Works and Government Services Canada. Retrieved May 12, 2016.
  3. 1 2 3 WMO. "Nowcasting" . Retrieved May 9, 2016.
  4. "L'assistance météorologique sur mesure pour l'hydrologie". Les services de Météo-France (in French). Météo-France. October 10, 1999. Archived from the original on March 4, 2005. Retrieved May 9, 2016.{{cite web}}: CS1 maint: unfit URL (link)
  5. "Auto-Nowcaster". UCAR . Retrieved May 9, 2016.
  6. "GSMaP RIKEN nowcast (GSMaP_RNC)". RIKEN.org (in Japanese). July 4, 2017. Retrieved July 5, 2017.
  7. "HyperCast" . Retrieved July 2, 2017.
  8. Youds, L.; Parker, D. J.; Adefisan, E. A.; Amekudzi, L.; Aryee, J. N. A.; Balogun, I. A.; Blyth, A. M.; Chanzu, B.; Danuor, S. (2021-05-24). "The future of African nowcasting". eprints.whiterose.ac.uk. doi:10.5518/100/68 . Retrieved 2021-05-24.
  9. "IntelliWeather StormPredator". IntelliWeather Inc. 2008. Retrieved 2011-11-26.
  10. "Nowcasting Research". World Weather Research Programme. World Meteorological Organization. June 3, 2009. Archived from the original on June 4, 2016. Retrieved May 9, 2016..
  11. "Sydney Olympic WWRP Forecast Demonstration Project". Research. Bureau of Meteorology. 2000. Retrieved May 9, 2016.
  12. "The Beijin2008 FDP/RDP project" (pdf2). World Weather Research Programme. World Meteorological Organization. June 3, 2009. Retrieved May 9, 2016.[ permanent dead link ]
  13. "B08FDP nowcast information". Projects. Bureau of Meteorology . Retrieved May 9, 2016.
  14. "WMO Symposium on Nowcasting" (PDF). World Weather Research Programme. Whistler, B.C., Canada: World Meteorological Organization. 30 Aug 2009. Retrieved May 9, 2016.

Further reading

See also