European Service Module

Last updated
European Service Module
Artemis 1 - Orion and ESM approach Moon.jpg
The ESM is visible at left as Orion approaches the Moon on the Artemis I mission
Manufacturer Airbus Defence and Space
Designer ESA
Operator NASA
Dimensions
Height4 m (13 ft) [1]
Diameter
  • 4.1 m (13 ft 5 in) excluding solar panels
  • 5.2 m (17 ft 1 in) with solar panels stowed
  • 19 m (62 ft 4 in) with solar panels deployed
Production
StatusOperational
Maiden launchNovember 16, 2022 (Artemis I)
Related spacecraft
Derived from Automated Transfer Vehicle
Flown with Orion
Propulsion
Propellant mass8,600 kg (19,000 lb) [2] [3]
Powered by1 × AJ10
8 × R-4D
Maximum thrustAJ10: 26.6 kN (6,000 lbf)
R-4D: 3.92 kN (880 lbf)
Propellant MON-3/MMH
European Service Module programme logo.png

The European Service Module (ESM) is the service module component of the Orion spacecraft, serving as its primary power and propulsion component until it is discarded at the end of each mission. In January 2013, NASA announced that the European Space Agency (ESA) will contribute the service module for Artemis I, based on the ESA's Automated Transfer Vehicle (ATV). It was delivered by Airbus Defence and Space in Bremen, in northern Germany to NASA at the end of 2018. After approval of the first module, the ESA will provide the ESMs from Artemis II to Artemis VI.

Contents

The module's first flight was Artemis I, the first major milestone in NASA's Artemis program to return humans to the Moon, on November 16, 2022. The Space Launch System launched Orion toward the Moon, where the ESM placed the spacecraft into distant retrograde orbit around the Moon, and subsequently extracted it from that orbit and sent it back to Earth.

The service module (SM) supports the crew module (CM) from launch through to separation prior to reentry. It provides in-space propulsion capability for orbital transfer, attitude control, and high altitude ascent aborts. It provides the water and oxygen needed for a habitable environment, generates and stores electrical power, and maintains the temperature of the vehicle's systems and components. This module can also transport unpressurized cargo and scientific payloads. [4]

History

Initial design

Pre-ATV service module design Orion SM.jpg
Pre-ATV service module design

Roughly cylindrical in shape, the original American-designed Orion SM, like the CM, would have been constructed of Al-Li alloy (to keep weight down), and would have featured a pair of deployable decagonal solar panels, similar in design to the panels used on the Mars Phoenix lander. The panels, the first to be used on a U.S. crewed spacecraft (except for a 10-year period, the Soviet/Russian Soyuz spacecraft has used them since the first mission in 1967), would allow NASA to eliminate the need to carry malfunction-prone fuel cells, and their associated hardware (mainly liquid H2 tanks) in the SM, resulting in a shorter and more maneuverable spacecraft. Successful initial testing of an Orion solar array design using full-scale "UltraFlex wing" hardware was reported in October 2008. [5]

The Orion Main Engine (OME) was a 33-kilonewton (7,500 lbf) thrust, pressure-fed, regeneratively cooled, storable bi-propellant rocket engine to be made by Aerojet. The OME was an increased performance version of the 27-kilonewton (6,000 lbf) thrust rocket engine used by the Space Shuttle for its Orbital Maneuvering System. The SM Reaction Control System (RCS), the spacecraft's maneuvering thrusters (originally based on the Apollo "quad" system, but resembling that used on its predecessor, Gemini), would also be pressure-fed, and would use the same propellants. NASA believed the SM RCS would be able to act as a backup for a trans-Earth injection burn in case the main SM engine failed.

A pair of liquid oxygen tanks (similar to those used in the Apollo service module) would provide, along with small tanks of nitrogen, the crew with breathing air at sea-level or "cruising altitude" pressure (1 or 0.7 atm), with a small "surge tank" providing necessary life support during reentry and touchdown. Lithium hydroxide (LiOH) cartridges would recycle the spacecraft's environmental system by "scrubbing" the carbon dioxide (CO2) exhaled by the astronauts from ship's air and adding fresh oxygen and nitrogen, which was then cycled back out into the system loop. Because of the switch from fuel cells to solar panels, the service module would have an onboard water tank to provide drinking water for the crew, and (when mixed with glycol), cooling water for the spacecraft's electronics. Unlike the practice during Apollo of dumping both water and urine overboard during the flight, the Orion would have an onboard recycling system, identical to that used on the International Space Station, to convert both waste water and urine into both drinking and cooling water.

The service module also mounted the spacecraft's waste heat management system (its radiators) and the aforementioned solar panels. These panels, along with backup batteries located in the Orion CM, would provide in-flight power to the ship's systems. The voltage, 28 volts DC, was similar to that used on the Apollo spacecraft during flight.

The Orion SM would be encapsulated by fiberglass shrouds jettisoned at the same time as the LES/Boost Protective Cover, which would take place roughly 212 minutes after launch (30 seconds after the solid rocket first stage was jettisoned). Prior to the "Orion 606" redesign, the Orion SM resembled a squat, enlarged version of the Apollo service module. The "Orion 606" SM design retained the 5-meter (16 ft) width for the attachments of the Orion SM with the Orion CM, but used a Soyuz-like service module design to allow Lockheed Martin to make the vehicle lighter in weight and permitting the attachment of the decagonal solar panels at the module's midpoints, instead of at the base near the spacecraft/rocket adapter, which might have subjected the panels to damage.

The Orion service module (SM) was projected comprising a cylindrical shape, having a diameter of 5 m (16 ft) and an overall length (including thruster) of 4.78 m (15 ft 8 in). The projected empty mass was 3,600 kg (8,000 lb), fuel capacity was 8,200 kg (18,000 lb). [6] [7]

Cost reviews and scope changes

A review of the Constellation program in 2009 by the new Augustine Commission prompted by the then new Obama administration had found that five years in, the service module development program was already running four years behind its 2020 lunar target and was woefully underfunded. The only element worth continuing was the Crew Exploration Vehicle in the role of a space station escape capsule. [8] This led in 2010 to the Administration cancelling the program by withdrawing funding in the proposed 2011 budget. A public outcry led to the program being frozen rather than outright cancelled and a review launched in to how costs could be cut, which found that it was possible to continue if there was an emphasis on finding alternate funding, reducing the complexity by narrowing the scope to focus on the Moon and deep space rather than Mars, and by reusing existing hardware, reducing the range of equipment requiring development. The Ares I launcher intended for crew flights had significant design issues such as being overweight and prone to dangerous vibration, and in the case of a catastrophic failure its blast radius exceeded the escape system's ejection range.[ citation needed ] Its role as the Orion launch vehicle was replaced by the Space Launch System, and the three different Crew Exploration Vehicle designs were merged in to a single Multipurpose Crew Exploration Vehicle.

European ATV-based module

Edoardo Amaldi ATV approaching the International Space Station in 2012 ATV-3 approaches the International Space Station 1 cropped.jpg
Edoardo Amaldi ATV approaching the International Space Station in 2012

In May 2011, the European Space Agency's (ESA) director general announced a possible collaboration with NASA to work on a successor to ESA's Automated Transfer Vehicle (ATV). [9] ESA's provision of this successor could be counted towards its 8% share of the operating costs of the International Space Station (ISS); the ATV missions resupplying the station only covered this obligation up to 2017. On 21 June 2012, Astrium announced that it had been awarded two separate studies to evaluate possible future missions building on the technology and experience gained from its development of ATV and the Columbus laboratory. The first study looked into the construction of a service module which would be used in tandem with the Orion capsule. [10] The second examined the production of a versatile multi-purpose orbital vehicle. Each study was worth €6.5 million. [11]

In November 2012, ESA obtained the commitment of its member states for it to construct an ATV-derived service module for Orion, to fly on the maiden flight of the Space Launch System, thereby meeting ESA's budgetary obligation to NASA regarding the ISS for 2017–2020. [12] No decision was made about supplying the module for later Orion flights. [13]

In January 2013, NASA announced its agreement, made the preceding December, that ESA would build the service module for Exploration Mission-1 (renamed Artemis I), then scheduled to take place in 2017. This service module was not required for Exploration Flight Test-1 in 2014, as this used a test service module supplied by Lockheed Martin. [14] On 17 November 2014 ESA signed a €390 million fixed price contract with Airbus Defence and Space for the development and construction of the first ATV-based service module. [15] In December 2016, ESA's member states agreed it would extend its commitment to the ISS to 2024, and would supply a second service module, as part of the resulting budgetary obligation. [16]

Design

Service module shown with the crew module, adapters, and fairing panels Orion Service Module elements 2015.jpg
Service module shown with the crew module, adapters, and fairing panels

The new design [17] is approximately 5.0 meters (16.5 ft) in diameter and 4.0 meters (13 ft) in length, and made of aluminium-lithium alloy. [18]

Looking up from beneath the ESM for the Artemis II mission showing its single AJ10 main engine and eight R-4D secondary engines Artemis II SM Move to Fast Cell (KSC-20230522-PH-AMS01 0010).jpg
Looking up from beneath the ESM for the Artemis II mission showing its single AJ10 main engine and eight R-4D secondary engines

The service module's main engine for Artemis I was a Space Shuttle Orbital Maneuvering System (OMS) AJ10-190 engine left over from the Space Shuttle program, [17] in which it flew on 19 missions and carried out 89 burns. [18] It is intended that the OMS will be used for the first three (or five [19] ) service modules and four alternate engine designs are under consideration for later flights, thought to include the AJ10-118k; used for the second stage of the Delta II it is a lighter and more powerful version in the same AJ10 engine family whose lineage began with the Vanguard. [20]

In comparison with the Apollo command and service module, which previously took astronauts to the Moon, the European Service Module (ESM) generates approximately twice as much electricity (11.2 kW vs 6.3 kW), weighs nearly 40% less when fully fueled (15,461 kg, [21] vs 24,520 kg) and is roughly the same size (4 m in length excluding engine [22] and 4.1 m vs 3.9 m in diameter) supporting the environment for a slightly (45%) larger habitable volume on the crew module (8.95 m3 vs 6.17 m3) though it will carry 50% less propellant for orbital maneuvers (8,600 kg usable propellant vs 18,584 kg).

The ESM will be able to support a crew of four for 21 days which exceeds the 14 day endurance for the three-man Apollo.

The new design for the solar arrays, replacing ATK's decagonal (labeled "circular") UltraFlex design, [23] is by Airbus Defence and Space, [18] whose subsidiary, Airbus Defence and Space Netherlands (then known as Dutch Space), built the ATV's X-shaped array of four panels. The ATV's array was expected to generate 4.6 kilowatts. The upgraded version for the service module will generate about 11 kilowatts, [23] and will span about 19 m (62 ft) when extended. [18]

In September 2015, Thales Alenia Space signed a contract with Airbus Defence and Space to develop and produce thermomechanical systems for the service module, including structure and micrometeoroid protection, thermal control and consumable storage and distribution. [24]

Lockheed Martin is building the two adapters, connecting the service module to the crew module and to the upper stage of the Space Launch System, and also the three fairing panels that are jettisoned after protecting the service module during launch and ascent. [18]

From 2017

The ESM for the Artemis II mission inside the O&C building after testing in 2023 Orion Service Module Testing (KSC-20230505-PH-AMS01 0003).jpg
The ESM for the Artemis II mission inside the O&C building after testing in 2023

On 16 February 2017 a €200m contract was signed between Airbus and the European Space Agency for the production of a second European service module for use on the first crewed Orion flight. [25]

On 26 October 2018 the first unit for Artemis I was assembled in full at Airbus Defence and Space's factory in Bremen. [26]

In November 2019, ESA member states approved the financing of ESMs for Artemis III and IV. [27] In May 2020 the contract between Airbus and the European Space Agency for the production of a third European Service Module was signed. [28]

In October 2020, ESA and NASA sign a memorandum of understanding which includes the provision by ESA of ESM-4 and ESM-5 as a participation in the Gateway space station, allowing three flights of European astronauts to Lunar orbit between 2025 and 2030. [29]

In February 2021, the contract between Airbus and the European Space Agency to provide ESM-4 to ESM-6 was signed. [30]

Specifications

Length4 m (13 ft 1 in)
Diameter4.1 m (13 ft 5 in) excluding solar panels
5.2 m (17 ft 1 in) with solar panels stowed
19 m (62 ft 4 in) with solar panels deployed [2]
Primary engine1 × Aerojet AJ10 providing 26.6 kN (6,000 lbf) of thrust (ESM-1 to ESM-6) [2]
1 × Aerojet Orion Main Engine (from ESM-7 on) [31]
Secondary engines8 × Aerojet R-4D providing 490 N (110 lbf) of thrust each, 3.92 kN (880 lbf) total [2]
Maneuvering thrusters24 × Airbus Reaction Control System engines in six pods of four providing 220 N (49 lbf) of thrust each, 5.28 kN (1,190 lbf) total [2]
Propellant capacity9,000 kg (20,000 lb) [1] of propellant in four 2,000 L (440 imp gal; 530 US gal) (two MON and two MMH). Usable load is 8,600 kg (19,000 lb). [2] [3]
Power generation11.2 kW from 4 x 7.375 m (24.20 ft) wings each containing 3 solar panels [1]
Total launch mass13,500 kg (29,800 lb) for Lunar Mission, including 240 kg (530 lb) of water in four tanks, 90 kg (200 lb) of oxygen in three tanks, 30 kg (66 lb) of nitrogen in one tank [2]
PayloadPayload mass up to 380 kg (840 lb) and a payload volume of up to 0.57 m3 (20 cu ft) [3]
Materials Aluminum alloy (structure), stainless steel, titanium (tanks), Kapton (insulation) and copper (electrical and mechanical components) [32]

European Service Module models

Related Research Articles

<span class="mw-page-title-main">Automated Transfer Vehicle</span> Uncrewed cargo spacecraft developed by the European Space Agency

The Automated Transfer Vehicle, originally Ariane Transfer Vehicle or ATV, was an expendable cargo spacecraft developed by the European Space Agency (ESA), used for space cargo transport in 2008–2015. The ATV design was launched to orbit five times, exclusively by the Ariane 5 heavy-lift launch vehicle. It effectively was a larger European counterpart to the Russian Progress cargo spacecraft for carrying upmass to a single destination—the International Space Station (ISS)—but with three times the capacity.

<span class="mw-page-title-main">Constellation program</span> Cancelled 2005–2010 NASA human spaceflight program

The Constellation program was a crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.

A service module is a component of a crewed space capsule containing a variety of support systems used for spacecraft operations. Usually located in the uninhabited area of the spacecraft, the service module serves a storehouse of critical subsystems and supplies for the mission such as electrical systems, environmental control, and propellant tanks. The service module is jettisoned upon the completion of the mission, and usually burns up during atmospheric reentry.

<span class="mw-page-title-main">Exploration Systems Architecture Study</span> NASA study

The Exploration Systems Architecture Study (ESAS) is the official title of a large-scale, system level study released by the National Aeronautics and Space Administration (NASA) in November 2005 of his goal of returning astronauts to the Moon and eventually Mars—known as the Vision for Space Exploration. The Constellation Program was cancelled in 2010 by the Obama Administration and replaced with the Space Launch System, later renamed as the Artemis Program in 2017 under the Trump Administration.

<span class="mw-page-title-main">CSTS</span> Former proposed design for a crewed spacecraft for low Earth orbit operations

Crew Space Transportation System (CSTS), or Advanced Crew Transportation System (ACTS), was a proposed design for a crewed spacecraft for low Earth orbit operations such as servicing the International Space Station, but also capable of exploration of the Moon and beyond. It was originally a joint project between the European Space Agency (ESA) and the Roscosmos, but later became solely an ESA project. This study was conceived as a basic strategic plan to keep a viable European human spaceflight program alive.

<span class="mw-page-title-main">Crew Exploration Vehicle</span> Planned orbiter component of NASAs cancelled Project Constellation; became Orion crew vehicle

The Crew Exploration Vehicle (CEV) was a component of the U.S. NASA Vision for Space Exploration plan. A competition was held to design a spacecraft that could carry humans to the destinations envisioned by the plan. The winning design was the Orion spacecraft.

<span class="mw-page-title-main">Outline of space exploration</span> Overview of and topical guide to space exploration

The following outline is provided as an overview of and topical guide to space exploration.

<span class="mw-page-title-main">Space Shuttle retirement</span> End of NASA Space Shuttle program in 2011

The retirement of NASA's Space Shuttle fleet took place from March to July 2011. Discovery was the first of the three active Space Shuttles to be retired, completing its final mission on March 9, 2011; Endeavour did so on June 1. The final shuttle mission was completed with the landing of Atlantis on July 21, 2011, closing the 30-year Space Shuttle program.

<span class="mw-page-title-main">Orion (spacecraft)</span> American–European spacecraft class for the Artemis program

Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of four beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Orion is intended to be launched atop a Space Launch System (SLS) rocket, with a tower launch escape system.

The European System Providing Refueling Infrastructure and Telecommunications (ESPRIT) is an under construction module of the Lunar Gateway. It will provide refueling through additional xenon and hydrazine capacity for use in the Power and Propulsion Element's ion engines and hydrazine thrusters. It will also provide additional communications equipment, a habitation area, and storage. It will have a launch mass of approximately 10,000 kg (22,000 lb), a length of 6.4 m (21 ft), and a diameter of 4.6 m (15 ft). ESA awarded two parallel design studies for ESPRIT, one mostly led by Airbus in partnership with Comex and OHB and one led by Thales Alenia Space. The construction of the module was approved in November 2019. On 14 October 2020, Thales Alenia Space announced that they had been selected by ESA to build the ESPRIT module.

<span class="mw-page-title-main">Artemis I</span> 2022 uncrewed Moon-orbiting NASA mission

Artemis I, formerly Exploration Mission-1 (EM-1), was an uncrewed Moon-orbiting mission that was launched in November 2022. As the first major spaceflight of NASA's Artemis program, Artemis I marked the agency's return to lunar exploration after the conclusion of the Apollo program five decades earlier. It was the first integrated flight test of the Orion spacecraft and Space Launch System (SLS) rocket, and its main objective was to test the Orion spacecraft, especially its heat shield, in preparation for subsequent Artemis missions. These missions seek to reestablish a human presence on the Moon and demonstrate technologies and business approaches needed for future scientific studies, including exploration of Mars.

Airbus Defence and Space is a division of Airbus SE. Formed in 2014 in the restructuring of European Aeronautic Defence and Space (EADS), Airbus SE comprises the former Airbus Military, Astrium, and Cassidian divisions. Contributing 21% of Airbus revenues in 2016, it is the second largest space company in the world.

<span class="mw-page-title-main">Artemis II</span> Artemis programs second lunar flight

Artemis II is a scheduled mission of the NASA-led Artemis program. It will use the second launch of the Space Launch System (SLS) rocket and include the first crewed mission of the Orion spacecraft. The mission is scheduled to take place no earlier than April 2026. Four astronauts will perform a flyby of the Moon and return to Earth, becoming the first crew to travel beyond low Earth orbit since Apollo 17 in 1972. Artemis II will be the first crewed launch from Launch Complex 39B of the Kennedy Space Center since STS-116 in 2006.

<span class="mw-page-title-main">Artemis III</span> Third orbital flight of the Artemis program

Artemis III is planned to be the first crewed Moon landing mission of the Artemis program and the first crewed flight of the Starship HLS lander. Artemis III is planned to be the second crewed Artemis mission and the first American crewed lunar landing since Apollo 17 in December 1972. As of December 2024, NASA officially expects Artemis III to launch no earlier than mid-2027 due to heat shield issues on Orion and valve problems in the spacecraft's life support system.

<span class="mw-page-title-main">Lunar Gateway</span> Lunar orbital space station under development

The Lunar Gateway, or simply Gateway, is a space station which is planned to be assembled in orbit around the Moon. The Gateway is intended to serve as a communication hub, science laboratory, and habitation module for astronauts as part of the Artemis program. It is a multinational collaborative project: participants include NASA, the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the Mohammed Bin Rashid Space Centre (MBRSC). The Gateway is planned to be the first space station beyond low Earth orbit.

<span class="mw-page-title-main">Artemis program</span> NASA-led lunar exploration program

The Artemis program is a Moon exploration program led by the United States' National Aeronautics and Space Administration (NASA), formally established in 2017 via Space Policy Directive 1. It is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 mission in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.

<span class="mw-page-title-main">Artemis IV</span> Fourth orbital flight of the Artemis program

Artemis IV is a planned mission of the NASA-led Artemis program. The mission will include the fourth use of a Space Launch System (SLS) launch vehicle, will send an Orion spacecraft with four astronauts to the Lunar Gateway space station, install a new module on the Gateway, and conduct the second lunar landing of the Artemis program.

<span class="mw-page-title-main">Lunar I-Hab</span> Planned lunar habitat module

The Lunar I-Hab is designed as a habitat module of the Lunar Gateway station, to be built by the European Space Agency (ESA) in collaboration with the Japan Aerospace Exploration Agency, or JAXA. The I-HAB will have a maximum launch mass of 10,000 kg (22,000 lb) and provide a habitable volume of 10 m3 (350 cu ft).

References

  1. 1 2 3 European Service Module test article 2015
  2. 1 2 3 4 5 6 7 Orion / EM-1 (Exploration Mission-1) Aug 2019
  3. 1 2 3 "Artemis 1".
  4. "Explore the Exploration Vehicle". NASA. 6 June 2013. Archived from the original on 6 May 2021. Retrieved 6 February 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. "NASA and ATK Successfully Deploy 18-Foot Diameter Solar Array for ST8 Program". ATK. 9 October 2008.
  6. "The Orion Service Module". NASA. 4 August 2008. Archived from the original on 13 August 2009. Retrieved 2008-08-19.
  7. "Orion". Encyclopedia Astronautica. Archived from the original on December 28, 2016. Retrieved 2013-05-11.
  8. Augustine, Norman; Austin, Wanda; Bejmuk, Bohdan; Chiao, Leroy; Chyba, Christopher; Crawley, Edward; Greason, Jeffrey; Kennel, Charles; Lyles, Lester; Ride, Sally (October 22, 2009). "Final Report" (PDF). Review of United States Human Space Flight Plans Committee. Archived from the original (PDF) on February 16, 2019. Retrieved August 26, 2022.
  9. "US and Europe plan new spaceship". BBC News . 5 May 2011. Archived from the original on 6 May 2011. Retrieved 2011-05-14.
  10. "ATV evolution studies look at exploration, debris removal". Spaceflight Now. 21 June 2012. Retrieved 2012-06-23.
  11. "Astrium awarded two ATV evolution studies from ESA". Astrium. 21 June 2012. Archived from the original on 3 April 2013. Retrieved 2012-06-23.
  12. Bergin, Chris (November 21, 2012). "UK steps up, as ESA commit to ATV Service Module on NASA's Orion". NASASpaceFlight.com. NASA. Retrieved 2013-05-06.
  13. Clark, Stephen (November 21, 2012). "ESA member states fund Orion service module". Spaceflight Now. Retrieved 2013-05-06.
  14. "NASA Signs Agreement for a European-Provided Orion Service Module – NASA". 2013-01-16. Retrieved 2024-05-15.
  15. "ESA Commissions Airbus Defence and Space as Prime Contractor for US Space Capsule Orion Service Module". spaceref business. 17 November 2014. Archived from the original on 12 May 2021. Retrieved 18 November 2014.
  16. de Selding, Peter B. (2 December 2016). "Europe commits to the space station and ExoMars as part of $11 billion in commitments to ESA". Space News . Retrieved 7 December 2016.
  17. 1 2 Bergin, Chris (20 June 2015). "Plum Brook prepped for EM-1 Orion Service Module testing". NASASpaceFlight.com. Retrieved 28 July 2015.
  18. 1 2 3 4 5 Garcia, Mark (17 June 2015). "NASA Gears Up to Test Orion's Powerhouse". NASA. Retrieved 28 July 2015.
  19. "Engine of Atlantis". Moon Daily. Retrieved 2024-05-15.
  20. Coppinger, Rob (2017-02-23). "ESA deal hinges on what Trump does with NASA's human spaceflight plans". SpaceNews. Retrieved 2024-05-15.
  21. "Orion (MPCV)".
  22. Apollo Operators Handbook Block II Spacecraft (PDF). Vol. 1. NASA. 15 April 1969. p. 60.
  23. 1 2 Leone, Dan (1 August 2013). "Ousted from First Orion Flight, Circular ATK Solar Arrays Still Set To Power Cygnus". Space News . Retrieved 28 July 2015.
  24. "Thales Alenia Space to supply thermomechanical systems for Orion ESM". 17 September 2015.
  25. ""Airbus Defence and Space Wins 100 Million Euros ESA Contract for Second Service Module for NASA's Orion Crewed Space Capsule" Feb 2017". Archived from the original on 2017-04-19. Retrieved 2017-04-18.
  26. "Call for media: The European Service module meets Orion". European Space Agency. 26 October 2018.
  27. "Earth observation, deep space exploration big winners in new ESA budget – Spaceflight Now" . Retrieved 2024-05-15.
  28. "European contract signed for Moon mission hardware". BBC News . 26 May 2020. Archived from the original on 2022-12-16.
  29. "NASA, European Space Agency Formalize Artemis Gateway Partnership – NASA" . Retrieved 2024-05-15.
  30. "Three more service modules for Artemis to be built in Europe". www.esa.int. Retrieved 2024-05-15.
  31. "Aerojet Rocketdyne Awarded NASA Contract for Orion Spacecraft Main Engine". 2021-09-21.
  32. "Tanks for Orion flight model no. 2 delivered".
  33. "One step closer to the moon". Airbus Defence & Space - LinkedIn page. Airbus Defence & Space. 2024-05-07. Retrieved 2024-05-07.