Mission type | Technological demonstrator |
---|---|
Operator | ESA |
SATCAT no. | 44878 |
Website | www |
Spacecraft properties | |
Bus | 3U CubeSat |
Manufacturer | Graz University of Technology, Austria |
Launch mass | 7 kg |
Dimensions | 96 mm × 96 mm × 290 mm (3.8 in × 3.8 in × 11.4 in) |
Start of mission | |
Launch date | 18 December 2019 |
Rocket | Soyuz VS23 [2] · [3] |
Launch site | Centre Spatial Guyanais ( Ensemble de Lancement Soyouz ) |
Contractor | Arianespace [4] · [5] |
OPS-SAT was a CubeSat by the European Space Agency (ESA), intended to demonstrate the improvements in mission control capabilities that will arise when satellites can fly more powerful on-board computers. The mission had the objective to break the cycle of "has never flown, will never fly" in the area of satellite control. It was the first CubeSat operated directly by ESA. [1]
The satellite had an experimental computer that is ten times more powerful than traditional ESA on-board computers. This on-board computer provided an experimental platform to run software experiments on board. One innovative concept was the deployment of space software in the form of apps. This concept was enabled by the NanoSat MO Framework (NMF) and allowed Apps to be uploaded to the spacecraft and then started on board. This was a new concept that ESA has successfully demonstrated in space. [6]
OPS-SAT was launched at 08:54:20 UTC on 18 December 2019, exactly twenty-four hours later than originally planned. The satellite deorbited on 22 May 2024. [7] During its descent, ESA collaborated with amateur radio enthusiasts to collect as much data as possible, observing the effects on the satellite as it passed through the Earth's lower atmosphere. [8]
OPS-SAT provided an in-orbit test-bed environment for the deployment of different experiments to test new protocols, new algorithms, and new techniques. The satellite was designed to be robust and no single point of failure should exist, so that it was always possible to recover the spacecraft if something went wrong with one of the software experiments. The robustness of the basic satellite itself allowed ESA flight control teams to upload and try out new, innovative control software submitted by experimenters.
OPS-SAT payload devices:
Communication links to ground:
The Experimental Platform of OPS-SAT was where experiments were executed. It had two Critical Link MityARM 5CSX in cold redundancy (if one failed, the second one was used). These had a Dual-core 800 MHz ARM Cortex-A9 processor, an Altera Cyclone V FPGA, 1 GB DDR3 RAM, and an external mass memory device with 8 GB. [9]
ESA's aim was to remove as many barriers to experimentation as possible. For example, there was little to no paperwork, ESOC's infrastructure was set up to do automated tests on the experiments, with the aim of reducing the overheads close to zero. Additionally, the experiments could be easily developed in form of apps using the NanoSat MO Framework.
In March 2023, the OPS-SAT Mission Control Team was awarded with the International SpaceOps 2023 Award for Outstanding Achievement. [10]
OPS-SAT achieved several significant firsts in various areas. [11]
The most innovative concept in OPS-SAT was the deployment of space software in the form of apps. The European Space Agency in collaboration with Graz University of Technology investigated and developed the NanoSat MO Framework – Open source software. [33]
The NanoSat MO Framework (NMF) is a software framework for nanosatellites based on CCSDS Mission Operations services. It includes a Software Development Kit (SDK) to develop experiments as NMF Apps which can then be installed, started, and stopped in space. The framework also includes monitoring and control capabilities for the apps which will allow experimenters from the ground to take control of their software when it is running in space. [34]
The OPS-SAT system image comes with the NanoSat MO Framework which interfaces with all of the OPS-SAT payload systems and provides it in the form of services to the experimenter application. The NanoSat MO Framework allows simple integration of other libraries and applications. During the development of the experiments, the NMF SDK can be used and it includes a simulator, providing most of the platform functionalities accessible to the experimenter. The simulator allows developers to make their NMF Apps without the need to access an advanced satellite testbed hardware platform.
The European Space Operations Centre (ESOC) serves as the main mission control centre for the European Space Agency (ESA) and is located in Darmstadt, Germany. ESOC's primary function is the operation of uncrewed spacecraft on behalf of ESA and the launch and early orbit phases (LEOP) of ESA and third-party missions. The Centre is also responsible for a range of operations-related activities within ESA and in cooperation with ESA's industry and international partners, including ground systems engineering, software development, flight dynamics and navigation, development of mission control tools and techniques and space debris studies.
A CubeSat is a class of small satellite with a form factor of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are deployed into orbit from the International Space Station, or launched as secondary payloads on a launch vehicle. As of December 2023, more than 2,300 CubeSats have been launched.
The interplanetary Internet is a conceived computer network in space, consisting of a set of network nodes that can communicate with each other. These nodes are the planet's orbiters and landers, and the Earth ground stations. For example, the orbiters collect the scientific data from the Curiosity rover on Mars through near-Mars communication links, transmit the data to Earth through direct links from the Mars orbiters to the Earth ground stations via the NASA Deep Space Network, and finally the data routed through Earth's internal internet.
The Spacecraft Monitoring & Control (SM&C) Working Group of the Consultative Committee for Space Data Systems (CCSDS), which sees the active participation of the main http://www.space.bas.bg/bg/procurement/files/pravilnik%20OP.PDF agencies, is defining a service-oriented architecture consisting of a set of standard end-to-end services between functions resident on board a spacecraft or based on the ground, that are responsible for mission operations.
CryoSat-1, also known as just CryoSat, was a European Space Agency satellite which was lost in a launch failure in 2005. The satellite was launched as part of the European Space Agency's CryoSat mission, which aims to monitor ice in the high latitudes. The second mission satellite, CryoSat-2, was successfully launched in April 2010.
The Nano-Japan Astrometry Satellite Mission for Infrared Exploration (Nano-JASMINE) is an astrometric microsatellite developed by the National Astronomical Observatory of Japan, with contributions by the University of Tokyo's Intelligent Space Systems Laboratory (ISSL). As of 2015, the satellite was planned for launch together with CHEOPS in 2019. However, this launch took place in December 2019 without Nano-JASMINE as one of the three piggyback payloads. Some sources named 2022 as the launch year of the satellite. By 2023, the launch had been cancelled and the satellite is now displayed in Kakamigahara Air and Space Museum.
The Asteroid Impact and Deflection Assessment (AIDA) missions are a proposed pair of space probes which will study and demonstrate the kinetic effects of crashing an impactor spacecraft into an asteroid moon. The mission is intended to test and validate impact models of whether a spacecraft could successfully deflect an asteroid on a collision course with Earth.
CHEOPS is a European space telescope. Its objective is to determine the size of known extrasolar planets, which will allow the estimation of their mass, density, composition and their formation. Launched on 18 December 2019, it is the first Small-class mission in ESA's Cosmic Vision science programme.
PhoneSat is an ongoing NASA project of building nanosatellites using unmodified consumer-grade off-the-shelf smartphones and Arduino platform and launching them into Low Earth Orbit. This project is part of NASA's Small Spacecraft Technology Program and was started in 2009 at NASA Ames Research Center.
The Spacecraft Monitoring & Control (SM&C) Working Group of the Consultative Committee for Space Data Systems, which sees the active participation of 10 space agencies and of the Space Domain Task Force of the Object Management Group, is defining a service oriented architecture consisting of a set of standard end-to-end services between functions resident on board a spacecraft or based on the ground, that are responsible for mission operations.
Laser communication in space is the use of free-space optical communication in outer space. Communication may be fully in space or in a ground-to-satellite or satellite-to-ground application. The main advantage of using laser communications over radio waves is increased bandwidth, enabling the transfer of more data in less time.
The NanoSat MO Framework (NMF) is an open-source software framework for small satellites based on CCSDS Mission Operations services.
Telespazio Germany GmbH is a European aerospace company, founded in 1978. The company provides consulting, technology and engineering services in aerospace missions for ESOC, EUMETSAT and the German Aerospace Center (DLR).
ArgoMoon is a CubeSat that was launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022 at 06:47:44 UTC. The objective of the ArgoMoon spacecraft is to take detailed images of the Interim Cryogenic Propulsion Stage following Orion separation, an operation that will demonstrate the ability of a cubesat to conduct precise proximity maneuvers in deep space. ASI has not confirmed nor denied whether this took place, but several images of the Earth and the Moon were taken.
EIRSAT-1 is a European Space Agency-sponsored 2U CubeSat developed and built by University College Dublin (UCD) in Dublin, Ireland.
The Nanosat 01, sometimes written as NanoSat-1 or NanoSat 01, was an artificial satellite developed by the Spanish Instituto Nacional de Técnica Aeroespacial (INTA) and launched 18 December 2004. Considered a nano satellite for its weight of less than 20 kg, its main mission was forwarding communications between far reaching points of the Earth such as Juan Carlos I Antarctic Base from mainland Spain. This was possible due to its polar orbit and altitude of 650 km above sea level. During an operational run the data obtained in the Antarctic would be uploaded to the satellite during its fly by and then, downloaded in Spain when satellite reached the Iberian Peninsula.
Light Italian CubeSat for Imaging of Asteroids is a six-unit CubeSat of the Italian Space Agency (ASI). LICIACube is a part of the Double Asteroid Redirection Test (DART) mission and carries out observational analysis of the Didymos asteroid binary system after DART's impact on Dimorphos. It communicates directly with Earth, sending back images of the ejecta and plume of DART's impact as well as having done asteroidal study during its flyby of the Didymos system from a distance of 56.7 km (35.2 mi), 165 seconds after DART's impact. LICIACube is the first purely Italian autonomous spacecraft in deep space. Data archiving and processing is managed by the Mission Control Center of Argotec. Mission ended sometime in the autumn of 2022
Phi-Sat-2 is an Earth observation CubeSat mission from the European Space Agency (ESA) capable of running AI apps directly on board. What makes Phi-Sat-2 particularly noteworthy is its utilization of the NanoSat MO Framework, a modular and open-source platform designed for small satellite missions.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)