In astrophysics, bow shocks are shock waves in regions where the conditions of density and pressure change dramatically due to blowing stellar wind. [1] Bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium. [1]
The defining criterion of a shock wave is that the bulk velocity of the plasma drops from "supersonic" to "subsonic", where the speed of sound cs is defined by where is the ratio of specific heats, is the pressure, and is the density of the plasma.
A common complication in astrophysics is the presence of a magnetic field. For instance, the charged particles making up the solar wind follow spiral paths along magnetic field lines. The velocity of each particle as it gyrates around a field line can be treated similarly to a thermal velocity in an ordinary gas, and in an ordinary gas the mean thermal velocity is roughly the speed of sound. At the bow shock, the bulk forward velocity of the wind (which is the component of the velocity parallel to the field lines about which the particles gyrate) drops below the speed at which the particles are gyrating.
The best-studied example of a bow shock is that occurring where the Sun's wind encounters Earth's magnetopause, although bow shocks occur around all planets, both unmagnetized, such as Mars [2] and Venus [3] and magnetized, such as Jupiter [4] or Saturn. [5] Earth's bow shock is about 17 kilometres (11 mi) thick [6] and located about 90,000 kilometres (56,000 mi) from the planet. [7]
Bow shocks form at comets as a result of the interaction between the solar wind and the cometary ionosphere. Far away from the Sun, a comet is an icy boulder without an atmosphere. As it approaches the Sun, the heat of the sunlight causes gas to be released from the cometary nucleus, creating an atmosphere called a coma. The coma is partially ionized by the sunlight, and when the solar wind passes through this ion coma, the bow shock appears.
The first observations were made in the 1980s and 90s as several spacecraft flew by comets 21P/Giacobini–Zinner, [8] 1P/Halley, [9] and 26P/Grigg–Skjellerup. [10] It was then found that the bow shocks at comets are wider and more gradual than the sharp planetary bow shocks seen at for example Earth. These observations were all made near perihelion when the bow shocks already were fully developed.
The Rosetta spacecraft followed comet 67P/Churyumov–Gerasimenko from far out in the solar system, at a heliocentric distance of 3.6 AU, in toward perihelion at 1.24 AU, and back out again. This allowed Rosetta to observe the bow shock as it formed when the outgassing increased during the comet's journey toward the Sun. In this early state of development the shock was called the "infant bow shock". [11] The infant bow shock is asymmetric and, relative to the distance to the nucleus, wider than fully developed bow shocks.
For several decades, the solar wind has been thought to form a bow shock at the edge of the heliosphere, where it collides with the surrounding interstellar medium. Moving away from the Sun, the point where the solar wind flow becomes subsonic is the termination shock, the point where the interstellar medium and solar wind pressures balance is the heliopause, and the point where the flow of the interstellar medium becomes subsonic would be the bow shock. This solar bow shock was thought to lie at a distance around 230 AU [12] from the Sun – more than twice the distance of the termination shock as encountered by the Voyager spacecraft.
However, data obtained in 2012 from NASA's Interstellar Boundary Explorer (IBEX) indicates the lack of any solar bow shock. [13] Along with corroborating results from the Voyager spacecraft, these findings have motivated some theoretical refinements; current thinking is that formation of a bow shock is prevented, at least in the galactic region through which the Sun is passing, by a combination of the strength of the local interstellar magnetic-field and of the relative velocity of the heliosphere. [14]
In 2006, a far infrared bow shock was detected near the AGB star R Hydrae. [15]
Bow shocks are also a common feature in Herbig Haro objects, in which a much stronger collimated outflow of gas and dust from the star interacts with the interstellar medium, producing bright bow shocks that are visible at optical wavelengths.
The Hubble Space Telescope captured these images of bow shocks made of dense gasses and plasma in the Orion Nebula.
If a massive star is a runaway star, it can form an infrared bow-shock that is detectable in 24 μm and sometimes in 8μm of the Spitzer Space Telescope or the W3/W4-channels of WISE. In 2016 Kobulnicky et al. did create the largest spitzer/WISE bow-shock catalog to date with 709 bow-shock candidates. [17] To get a larger bow-shock catalog The Milky Way Project (a Citizen Science project) aims to map infrared bow-shocks in the galactic plane. This larger catalog will help to understand the stellar wind of massive stars. [18]
The closest stars with infrared bow-shocks are:
Name | Distance (pc) | Spectral type | Belongs to |
---|---|---|---|
Mimosa | 85 | B1IV | Lower Centaurus–Crux subgroup |
Alpha Muscae | 97 | B2IV | Lower Centaurus–Crux subgroup |
Acrux | 99 | B1V+B0.5IV | Lower Centaurus–Crux subgroup |
Zeta Ophiuchi | 112 | O9.2IVnn | Upper Scorpius subgroup |
Theta Carinae | 140 | B0Vp | IC 2602 |
Tau Scorpii | 145 | B0.2V | Upper Scorpius subgroup |
Delta Scorpii | 150 | B0.3IV | Upper Scorpius subgroup |
Epsilon Persei | 195 | B1.5III | |
Alniyat | 214 | O9.5(V)+B7(V) | Upper Scorpius subgroup |
Most of them belong to the Scorpius–Centaurus association and Theta Carinae, which is the brightest star of IC 2602, might also belong to the Lower Centaurus–Crux subgroup. Epsilon Persei does not belong to this stellar association. [19]
A similar effect, known as the magnetic draping effect, occurs when a super-Alfvenic plasma flow impacts an unmagnetized object such as what happens when the solar wind reaches the ionosphere of Venus: [20] the flow deflects around the object draping the magnetic field along the wake flow. [21]
The condition for the flow to be super-Alfvenic means that the relative velocity between the flow and object, , is larger than the local Alfven velocity which means a large Alfvenic Mach number: . For unmagnetized and electrically conductive objects, the ambient field creates electric currents inside the object, and into the surrounding plasma, such that the flow is deflected and slowed as the time scale of magnetic dissipation is much longer than the time scale of magnetic field advection. The induced currents in turn generate magnetic fields that deflect the flow creating a bow shock. For example, the ionospheres of Mars and Venus provide the conductive environments for the interaction with the solar wind. Without an ionosphere, the flowing magnetized plasma is absorbed by the non-conductive body. The latter occurs, for example, when the solar wind interacts with Moon which has no ionosphere. In magnetic draping, the field lines are wrapped and draped around the leading side of the object creating a narrow sheath which is similar to the bow shocks in the planetary magnetospheres. The concentrated magnetic field increases until the ram pressure becomes comparable to the magnetic pressure in the sheath:
where is the density of the plasma, is the draped magnetic field near the object, and is the relative speed between the plasma and the object. Magnetic draping has been detected around planets, moons, solar coronal mass ejections, and galaxies. [22]
A corona is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures known as solar prominences or filaments.
The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instability.
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo.
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.
A magnetic sail is a proposed method of spacecraft propulsion where an onboard magnetic field source interacts with a plasma wind to form an artificial magnetosphere that acts as a sail, transferring force from the wind to the spacecraft requiring little to no propellant as detailed for each proposed magnetic sail design in this article.
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy uses a type of space telescope that can see x-ray radiation which standard optical telescopes, such as the Mauna Kea Observatories, cannot.
Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.
A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.
In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.
The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun. It takes the shape of a vast, tailed bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium. The "bubble" of the heliosphere is continuously "inflated" by plasma originating from the Sun, known as the solar wind. Outside the heliosphere, this solar plasma gives way to the interstellar plasma permeating the Milky Way. As part of the interplanetary magnetic field, the heliosphere shields the Solar System from significant amounts of cosmic ionizing radiation; uncharged gamma rays are, however, not affected. Its name was likely coined by Alexander J. Dessler, who is credited with the first use of the word in the scientific literature in 1967. The scientific study of the heliosphere is heliophysics, which includes space weather and space climate.
The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM stops at the heliopause, outside of which the interstellar medium begins. Before 1950, interplanetary space was widely considered to either be an empty vacuum, or consisting of "aether".
The following outline is provided as an overview of and topical guide to astronomy:
A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant.
The Max Planck Institute for Solar System Research is a research institute in astronomy and astrophysics located in Göttingen, Germany, where it relocated in February 2014 from the nearby village of Lindau. The exploration of the Solar System is the central theme for research done at this institute.
Heliophysics is the physics of the Sun and its connection with the Solar System. NASA defines heliophysics as "(1) the comprehensive new term for the science of the Sun - Solar System Connection, (2) the exploration, discovery, and understanding of Earth's space environment, and (3) the system science that unites all of the linked phenomena in the region of the cosmos influenced by a star like our Sun."
A comet tail and coma are visible features of a comet when they are illuminated by the Sun and may become visible from Earth when a comet passes through the inner Solar System. As a comet approaches the inner Solar System, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them.
Energetic Neutral Atom (ENA) imaging is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.
In solar physics, heliospheric pickup ions are created when neutral particles inside the heliosphere are ionized by either solar ultraviolet radiation, charge exchange with solar wind protons or electron impact ionization. Pickup ions are generally characterized by their single charge state, a typical velocity that ranges between 0 km/s and twice the solar wind velocity (~800 km/s), a composition that reflects their neutral seed population and their spatial distribution in the heliosphere. The neutral seed population of these ions can either be of interstellar origin or of lunar-, cometary, or inner-source origin. Just after the ionization, the singly charged ions are picked up by the magnetized solar wind plasma and develop strong anisotropic and toroidal velocity distribution functions, which gradually transform into a more isotropic state. After their creation, pickup ions move with the solar wind radially outwards from the Sun.
Merav Opher is a professor of astronomy at Boston University known for her work on the heliosphere, the cocoon formed by the wind emanated from the Sun as it travels in the Galaxy. In 2021 she was named a William Bentinck-Smith Fellow at the Harvard Radcliffe Institute.
Dust astronomy is a subfield of astronomy that uses the information contained in individual cosmic dust particles ranging from their dynamical state to its isotopic, elemental, molecular, and mineralogical composition in order to obtain information on the astronomical objects occurring in outer space. Dust astronomy overlaps with the fields of Planetary science, Cosmochemistry, and Astrobiology.