Tachocline

Last updated
Internal rotation in the Sun, showing differential rotation in the outer convective region (as a function of latitude) and almost uniform rotation in the central radiative region. The transition between these regions is called the tachocline. To convert the y-axis to period, use 500 nanoHz = 23.15 days. Tachocline.svg
Internal rotation in the Sun, showing differential rotation in the outer convective region (as a function of latitude) and almost uniform rotation in the central radiative region. The transition between these regions is called the tachocline. To convert the y-axis to period, use 500 nanoHz = 23.15 days.

The tachocline is the transition region of stars of more than 0.3 solar masses, between the radiative interior and the differentially rotating outer convective zone. This causes the region to have a very large shear as the rotation rate changes very rapidly. The convective exterior rotates as a normal fluid with differential rotation with the poles rotating slowly and the equator rotating quickly. The radiative interior exhibits solid-body rotation, possibly due to a fossil field. The rotation rate through the interior is roughly equal to the rotation rate at mid-latitudes, i.e. in-between the rate at the slow poles and the fast equator. Recent results from helioseismology indicate that the tachocline is located at a radius of at most 0.70 times the solar radius (measured from the core, i.e., the surface is at 1 solar radius), with a thickness of 0.04 times the solar radius. This would mean the area has a very large shear profile that is one way that large scale magnetic fields can be formed.

The geometry and width of the tachocline are thought to play an important role in models of the stellar dynamos by winding up the weaker poloidal field to create a much stronger toroidal field. Recent radio observations of cooler stars and brown dwarfs, which do not have a radiative core and only have a convective zone, demonstrate that they maintain large-scale, solar-strength magnetic fields and display solar-like activity despite the absence of tachoclines. This suggests that the convective zone alone may be responsible for the function of the solar dynamo. [1]

The term tachocline was coined in a paper by Edward Spiegel and Jean-Paul Zahn in 1992 [2] by analogy to the oceanic thermocline.

An illustration of the structure of the Sun
.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}
Granules
Sunspot
Photosphere
Chromosphere
Convection zone
Radiation zone
Tachocline
Solar core
Solar corona
Flare
Prominence
Solar wind Sun poster.svg
An illustration of the structure of the Sun

Related Research Articles

<span class="mw-page-title-main">Sun</span> Star at the center of the Solar System

The Sun is the star at the center of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth. The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity.

Differential rotation is seen when different parts of a rotating object move with different angular velocities at different latitudes and/or depths of the body and/or in time. This indicates that the object is not rigid. In fluid objects, such as accretion disks, this leads to shearing. Galaxies and protostars usually show differential rotation; examples in the Solar System include the Sun, Jupiter and Saturn.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes directly, and local helioseismology, which studies the propagation of the component waves near the Sun's surface.

<span class="mw-page-title-main">Radiation zone</span> Radiative layer of stars

A radiation zone, or radiative region, is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

<span class="mw-page-title-main">Solar rotation</span> Differential rotation of the Sun

Solar rotation varies with latitude. The Sun is not a solid body, but is composed of a gaseous plasma. Different latitudes rotate at different periods. The source of this differential rotation is an area of current research in solar astronomy. The rate of surface rotation is observed to be the fastest at the equator and to decrease as latitude increases. The solar rotation period is 25.67 days at the equator and 33.40 days at 75 degrees of latitude.

<span class="mw-page-title-main">Alpha Ophiuchi</span> Star in the constellation Ophiuchus

Alpha Ophiuchi, also named Rasalhague, is a binary star and the brightest star in the constellation of Ophiuchus.

In solar physics, the Babcock model and its variants describe a mechanism with which they attempt to explain magnetic and sunspot patterns observed on the Sun. It is named after Horace W. Babcock.

Convective overshoot is a phenomenon of convection carrying material beyond an unstable region of the atmosphere into a stratified, stable region. Overshoot is caused by the momentum of the convecting material, which carries the material beyond the unstable region.

The solar dynamo is a physical process that generates the Sun's magnetic field. It is explained with a variant of the dynamo theory. A naturally occurring electric generator in the Sun's interior produces electric currents and a magnetic field, following the laws of Ampère, Faraday and Ohm, as well as the laws of fluid dynamics, which together form the laws of magnetohydrodynamics. The detailed mechanism of the solar dynamo is not known and is the subject of current research.

The standard solar model (SSM) is a mathematical model of the Sun as a spherical ball of gas. This stellar model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter, are to adjust the SSM to "fit" the observed Sun.

<span class="mw-page-title-main">Coronal loop</span> Arch-like structure in the Suns corona

In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's atmosphere made up of relatively dense plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the transition region and lower corona. They typically form and dissipate over periods of seconds to days and may span anywhere from 1 to 1,000 megametres in length.

<span class="mw-page-title-main">Stellar magnetic field</span> Magnetic field generated inside a star

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

Gyrochronology is a method for estimating the age of a low-mass (cool) main sequence star from its rotation period. The term is derived from the Greek words gyros, chronos and logos, roughly translated as rotation, age, and study respectively. It was coined in 2003 by Sydney Barnes to describe the associated procedure for deriving stellar ages, and developed extensively in empirical form in 2007.

The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere - the convection field. Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field Bo. The generation process is not yet completely understood. One possibility is viscous interaction between solar wind and the boundary layer of the magnetosphere (magnetopause). Another process may be magnetic reconnection. Finally, a hydromagnetic dynamo process in the polar regions of the inner magnetosphere may be possible. Direct measurements via satellites have given a fairly good picture of the structure of that field. A number of models of that field exists.

<span class="mw-page-title-main">Accretion disk</span> Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

In astronomy, the Kraft break refers to the abrupt decrease in stars' average rotation rates at surface temperatures below about 6200 kelvin. The so-called break bears the name of astronomer Robert Kraft, though its existence was recognized prior to his publications on the topic. The break is understood to separate stars with deep convective envelopes and efficient magnetic dynamos from those without. The dynamos are thought to maintain magnetic fields that transfer angular momentum to the stellar wind, thus slowing down the star's surface through magnetic braking. In hot stars the process is less efficient so the stars continue to rotate quickly.

<span class="mw-page-title-main">2MASS J03480772−6022270</span> Brown dwarf in the constellation Reticulum

2MASS J03480772−6022270 is a brown dwarf of spectral class T7, located in the constellation Reticulum approximately 27.2 light-years from the Sun. It was discovered by astronomer Adam Burgasser and collaborators of the 2MASS Wide-Field T Dwarf Search in 2002. With a rotation period of 1.08 hours, it is the fastest-rotating brown dwarf confirmed as of 2022. The rotational velocity at its equator is over 100 km/s (62 mi/s), approaching the predicted rotational speed limit beyond which it would break apart due to centripetal forces. As a consequence of its rapid rotation, the brown dwarf is slightly flattened at its poles to a similar degree as Saturn, the most oblate planet in the Solar System. Its rapid rotation may enable strong auroral radio emissions via charged particle interactions in its magnetic field, as observed in other known rapidly-rotating brown dwarfs.

In plasma physics, magnetic buoyancy is an upward force exerted on magnetic flux tubes that are immersed in electrically conducting fluids and are under the influence of a gravitational force. It acts on magnetic flux tubes in stellar convection zones where it plays an important role in the formation of sunspots and starspots. It was first proposed by Eugene Parker in 1955.

References

  1. Route, Matthew (October 20, 2016). "The Discovery of Solar-like Activity Cycles Beyond the End of the Main Sequence?". The Astrophysical Journal Letters. 830 (2): 27. arXiv: 1609.07761 . Bibcode:2016ApJ...830L..27R. doi: 10.3847/2041-8205/830/2/L27 . S2CID   119111063.
  2. Spiegel, E. A.; Zahn, J. -P. (November 1992). "The solar tachocline". Astronomy and Astrophysics. 265: 106–114. Bibcode:1992A&A...265..106S.

Additional References