Convection zone

Last updated
An illustration of the structure of the Sun and a red giant star, showing their convective zones. These are the granular zones in the outer layers of the stars. Structure of Stars (artist's impression).jpg
An illustration of the structure of the Sun and a red giant star, showing their convective zones. These are the granular zones in the outer layers of the stars.
An illustration of the structure of the Sun
.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}
Granules
Sunspot
Photosphere
Chromosphere
Convection zone
Radiation zone
Tachocline
Solar core
Solar corona
Flare
Prominence
Solar wind Sun poster.svg
An illustration of the structure of the Sun

A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation and conduction.

Contents

Stellar convection consists of mass movement of plasma within the star which usually forms a circular convection current with the heated plasma ascending and the cooled plasma descending.

The Schwarzschild criterion expresses the conditions under which a region of a star is unstable to convection. A parcel of gas that rises slightly will find itself in an environment of lower pressure than the one it came from. As a result, the parcel will expand and cool. If the rising parcel cools to a lower temperature than its new surroundings, so that it has a higher density than the surrounding gas, then its lack of buoyancy will cause it to sink back to where it came from. However, if the temperature gradient is steep enough (i.e. the temperature changes rapidly with distance from the center of the star), or if the gas has a very high heat capacity (i.e. its temperature changes relatively slowly as it expands) then the rising parcel of gas will remain warmer and less dense than its new surroundings even after expanding and cooling. Its buoyancy will then cause it to continue to rise. The region of the star in which this happens is the convection zone.

Main sequence stars

In main sequence stars more than 1.3 times the mass of the Sun, the high core temperature causes nuclear fusion of hydrogen into helium to occur predominantly via the carbon-nitrogen-oxygen (CNO) cycle instead of the less temperature-sensitive proton–proton chain. The high temperature gradient in the core region forms a convection zone that slowly mixes the hydrogen fuel with the helium product. The core convection zone of these stars is overlaid by a radiation zone that is in thermal equilibrium and undergoes little or no mixing. [1] In the most massive stars, the convection zone may reach all the way from the core to the surface. [2]

In main sequence stars of less than about 1.3 solar masses, the outer envelope of the star contains a region where partial ionization of hydrogen and helium raises the heat capacity. The relatively low temperature in this region simultaneously causes the opacity due to heavier elements to be high enough to produce a steep temperature gradient. This combination of circumstances produces an outer convection zone, the top of which is visible in the Sun as solar granulation. Low-mass main-sequence stars, such as red dwarfs below 0.35 solar masses, [3] as well as pre-main sequence stars on the Hayashi track, are convective throughout and do not contain a radiation zone. [4]

In main sequence stars similar to the Sun, which have a radiative core and convective envelope, the transition region between the convection zone and the radiation zone is called the tachocline.

Red giants

In red giant stars, and particularly during the asymptotic giant branch phase, the surface convection zone varies in depth during the phases of shell burning. This causes dredge-up events, short-lived very deep convection zones that transport fusion products to the surface of the star. [5]

Related Research Articles

<span class="mw-page-title-main">Main sequence</span> Continuous band of stars that appears on plots of stellar color versus brightness

In astronomy, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or dwarf stars, and positions of stars on and off the band are believed to indicate their physical properties, as well as their progress through several types of star life-cycles. These are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Red supergiant</span> Stars with a supergiant luminosity class with a spectral type of K or M

Red supergiants (RSGs) are stars with a supergiant luminosity class and a stellar classification K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.

<span class="mw-page-title-main">Wolf 359</span> Red dwarf in the constellation Leo

Wolf 359 is a red dwarf star located in the constellation Leo, near the ecliptic. At a distance of 7.86 light-years from Earth, it has an apparent magnitude of 13.54 and can only be seen with a large telescope. Wolf 359 is one of the nearest stars to the Sun with only the Alpha Centauri system, Barnard's Star, and the brown dwarfs Luhman 16 and WISE 0855−0714 known to be closer. Its proximity to Earth has led to its mention in several works of fiction.

<span class="mw-page-title-main">CoRoT</span> European space telescope that operated between 2006 - 2014

CoRoT was a space telescope mission which operated from 2006 to 2013. The mission's two objectives were to search for extrasolar planets with short orbital periods, particularly those of large terrestrial size, and to perform asteroseismology by measuring solar-like oscillations in stars. The mission was led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA) and other international partners.

<span class="mw-page-title-main">Zeta Reticuli</span> Binary star system in the constellation Reticulum

Zeta Reticuli, Latinized from ζ Reticuli, is a wide binary star system in the southern constellation of Reticulum. From the southern hemisphere the pair can be seen with the naked eye as a double star in very dark skies. Based upon parallax measurements, this system is located at a distance of about 39.3 light-years from Earth. Both stars are solar analogs that have characteristics similar to those of the Sun. They belong to the Zeta Herculis Moving Group of co-moving stars that share a common origin.

<span class="mw-page-title-main">Stellar structure</span> Structure of stars

Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.

<span class="mw-page-title-main">Asymptotic giant branch</span> Stars powered by fusion of hydrogen and helium in shell with an inactive core of carbon and oxygen

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives.

<span class="mw-page-title-main">Red-giant branch</span> Portion of the giant branch before helium ignition

The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass stars. Red-giant-branch stars have an inert helium core surrounded by a shell of hydrogen fusing via the CNO cycle. They are K- and M-class stars much larger and more luminous than main-sequence stars of the same temperature.

In astrophysics, chemically peculiar stars are stars with distinctly unusual metal abundances, at least in their surface layers.

HD 93083 is an orange-hued star in the southern constellation of Antlia. It has the proper name Macondo, after the mythical village of the novel One Hundred Years of Solitude. The name was selected by Colombia during the IAU's NameExoWorlds campaign. The star has an apparent visual magnitude of 8.30, which is too faint to be visible to the naked eye. It is located at a distance of 93 light years from the Sun based on parallax. HD 93083 is drifting further away with a radial velocity of +43.65 km/s, having come to within 43 light-years some 484,000 years ago.

<span class="mw-page-title-main">Subgiant</span> Type of star larger than main-sequence but smaller than a giant

A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

Convective overshoot is a phenomenon of convection carrying material beyond an unstable region of the atmosphere into a stratified, stable region. Overshoot is caused by the momentum of the convecting material, which carries the material beyond the unstable region.

In astronomy, the intracluster medium (ICM) is the superheated plasma that permeates a galaxy cluster. The gas consists mainly of ionized hydrogen and helium and accounts for most of the baryonic material in galaxy clusters. The ICM is heated to temperatures on the order of 10 to 100 megakelvins, emitting strong X-ray radiation.

<span class="mw-page-title-main">Yellow hypergiant</span> Class of massive star with a spectral type of A to K

A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually luminous stars, with absolute magnitude (MV) around −9, but also one of the rarest, with just 20 known in the Milky Way and six of those in just a single cluster. They are sometimes referred to as cool hypergiants in comparison with O- and B-type stars, and sometimes as warm hypergiants in comparison with red supergiants.

The standard solar model (SSM) is a mathematical model of the Sun as a spherical ball of gas. This stellar model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter, are to adjust the SSM to "fit" the observed Sun.

<span class="mw-page-title-main">Red giant</span> Type of large cool star

A red giant is a luminous giant star of low or intermediate mass in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.

<span class="mw-page-title-main">R136a1</span> Wolf–Rayet star with one of the highest mass and luminosity of any known star

R136a1 is one of the most massive and luminous stars known, at nearly 200 M and nearly 4.7 million L, and is also one of the hottest, at around 46,000 K. It is a Wolf–Rayet star at the center of R136, the central concentration of stars of the large NGC 2070 open cluster in the Tarantula Nebula in the Large Magellanic Cloud. The cluster can be seen in the far southern celestial hemisphere with binoculars or a small telescope, at magnitude 7.25. R136a1 itself is 100 times fainter than the cluster and can only be resolved using speckle interferometry.

<span class="mw-page-title-main">O-type star</span> Stellar classification

An O-type star is a hot, blue-white star of spectral type O in the Yerkes classification system employed by astronomers. They have temperatures in excess of 30,000 kelvins (K). Stars of this type have strong absorption lines of ionised helium, strong lines of other ionised elements, and hydrogen and neutral helium lines weaker than spectral type B.

References

  1. Behrend, R.; Maeder, A. (2001). "Formation of massive stars by growing accretion rate". Astronomy and Astrophysics. 373: 190–198. arXiv: astro-ph/0105054 . Bibcode:2001A&A...373..190B. doi:10.1051/0004-6361:20010585. S2CID   18153904.
  2. Martins, F.; Depagne, E.; Russeil, D.; Mahy, L. (2013). "Evidence of quasi-chemically homogeneous evolution of massive stars up to solar metallicity". Astronomy & Astrophysics. 554: A23. arXiv: 1304.3337 . Bibcode:2013A&A...554A..23M. doi:10.1051/0004-6361/201321282. S2CID   54707309.
  3. Reiners, Ansgar; Basri, Gibor (March 2009). "On the magnetic topology of partially and fully convective stars". Astronomy and Astrophysics. 496 (3): 787–790. arXiv: 0901.1659 . Bibcode:2009A&A...496..787R. doi:10.1051/0004-6361:200811450. S2CID   15159121.
  4. d'Antona, F.; Montalbán, J. (2003). "Efficiency of convection and Pre-Main Sequence lithium depletion". Astronomy and Astrophysics. 212: 213–218. arXiv: astro-ph/0309348 . Bibcode:2003A&A...412..213D. doi:10.1051/0004-6361:20031410. S2CID   2590382.
  5. Lebzelter, T.; Lederer, M. T.; Cristallo, S.; Hinkle, K. H.; Straniero, O.; Aringer, B. (2008). "AGB stars of the intermediate-age LMC cluster NGC 1846". Astronomy and Astrophysics. 486 (2): 511. arXiv: 0805.3242 . Bibcode:2008A&A...486..511L. doi:10.1051/0004-6361:200809363. S2CID   18811290.

Further reading