Horizontal branch

Last updated
Hertzsprung-Russell diagram for globular cluster M5, with the horizontal branch marked in yellow, RR Lyrae stars in green, and some of the more luminous red-giant branch stars in red M5 colour magnitude diagram.png
Hertzsprung–Russell diagram for globular cluster M5, with the horizontal branch marked in yellow, RR Lyrae stars in green, and some of the more luminous red-giant branch stars in red

The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core. The onset of core helium fusion at the tip of the red-giant branch causes substantial changes in stellar structure, resulting in an overall reduction in luminosity, some contraction of the stellar envelope, and the surface reaching higher temperatures.

Contents

Discovery

Horizontal branch stars were discovered with the first deep photographic photometric studies of globular clusters [1] [2] and were notable for being absent from all open clusters that had been studied up to that time. The horizontal branch is so named because in low-metallicity star collections like globular clusters, HB stars lie along a roughly horizontal line in a Hertzsprung–Russell diagram. Because the stars of one globular cluster are all at essentially the same distance from us, their apparent magnitudes all have the same relationship to their absolute magnitudes, and thus absolute-magnitude-related properties are plainly visible on an H-R diagram confined to stars of that cluster, undiffused by distance and thence magnitude uncertainties.

Evolution

The evolutionary track of a sun-like star, showing the horizontal branch and red clump region Evolutionary track 1m.svg
The evolutionary track of a sun-like star, showing the horizontal branch and red clump region

After exhausting their core hydrogen, stars leave the main sequence and begin fusion in a hydrogen shell around the helium core and become giants on the red-giant branch. In stars with masses up to 2.3 times the mass of the Sun the helium core becomes a region of degenerate matter that does not contribute to the generation of energy. It continues to grow and increase in temperature as the hydrogen fusion in the shell contributes more helium. [3]

If the star has more than about 0.5 solar masses, [4] the core eventually reaches the temperature necessary for the fusion of helium into carbon through the triple-alpha process. The initiation of helium fusion begins across the core region, which will cause an immediate temperature rise and a rapid increase in the rate of fusion. Within a few seconds the core becomes non-degenerate and quickly expands, producing an event called helium flash. Non-degenerate cores initiate fusion more smoothly, without a flash. The output of this event is absorbed by the layers of plasma above, so the effects are not seen from the exterior of the star. The star now changes to a new equilibrium state, and its evolutionary path switches from the red-giant branch (RGB) onto the horizontal branch of the Hertzsprung–Russell diagram. [3]

Stars initially between about 2.3 M and 8 M have larger helium cores that do not become degenerate. Instead their cores reach the Schönberg–Chandrasekhar mass at which they are no longer in hydrostatic or thermal equilibrium. They then contract and heat up, which triggers helium fusion before the core becomes degenerate. These stars also become hotter during core helium fusion, but they have different core masses and hence different luminosities from HB stars. They vary in temperature during core helium fusion and perform a blue loop before moving to the asymptotic giant branch. Stars more massive than about 8 M also ignite their core helium smoothly, and also go on to burn heavier elements as a red supergiant. [5]

Stars remain on the horizontal branch for around 100 million years, becoming slowly more luminous in the same way that main sequence stars increase luminosity as the virial theorem shows. When their core helium is eventually exhausted, they progress to helium shell burning on the asymptotic giant branch (AGB). On the AGB they become cooler and much more luminous. [3]

Horizontal branch morphology

Stars on the horizontal branch all have very similar core masses, following the helium flash. This means that they have very similar luminosities, and on a Hertzsprung–Russell diagram plotted by visual magnitude the branch is horizontal.

The size and temperature of an HB star depends on the mass of the hydrogen envelope remaining around the helium core. Stars with larger hydrogen envelopes are cooler. This creates the spread of stars along the horizontal branch at constant luminosity. The temperature variation effect is much stronger at lower metallicity, so old clusters usually have more pronounced horizontal branches. [6]

Although the horizontal branch is named because it consists largely of stars with approximately the same absolute magnitude across a range of temperatures, lying in a horizontal bar on a color–magnitude diagrams, the branch is far from horizontal at the blue end. The horizontal branch ends in a "blue tail" with hotter stars having lower luminosity, occasionally with a "blue hook" of extremely hot stars. It is also not horizontal when plotted by bolometric luminosity, with hotter horizontal branch stars being less luminous than cooler ones. [7]

The hottest horizontal-branch stars, referred to as extreme horizontal branch, have temperatures of 20,000–30,000 K. This is far beyond what would be expected for a normal core helium burning star. Theories to explain these stars include binary interactions, and "late thermal pulses", where a thermal pulse that asymptotic giant branch (AGB) stars experience regularly, occurs after fusion has ceased and the star has entered the superwind phase. [8] These stars are "born again" with unusual properties. Despite the bizarre-sounding process, this is expected to occur for 10% or more of post-AGB stars, although it is thought that only particularly late thermal pulses create extreme horizontal-branch stars, after the planetary nebular phase and when the central star is already cooling towards a white dwarf. [9]

The RR Lyrae gap

Hertzsprung-Russell diagram for the globular cluster M3 M3 color magnitude diagram.jpg
Hertzsprung–Russell diagram for the globular cluster M3

Globular cluster CMDs (Color-Magnitude diagrams) generally show horizontal branches that have a prominent gap in the HB. This gap in the CMD incorrectly suggests that the cluster has no stars in this region of its CMD. The gap occurs at the instability strip, where many pulsating stars are found. These pulsating horizontal-branch stars are known as RR Lyrae variable stars and they are obviously variable in brightness with periods of up to 1.2 days. [10]

It requires an extended observing program to establish the star's true (that is, averaged over a full period) apparent magnitude and color. Such a program is usually beyond the scope of an investigation of a cluster's color–magnitude diagram. Because of this, while the variable stars are noted in tables of a cluster's stellar content from such an investigation, these variable stars are not included in the graphic presentation of the cluster CMD because data adequate to plot them correctly are unavailable. This omission often results in the RR Lyrae gap seen in many published globular cluster CMDs. [11]

Different globular clusters often display different HB morphologies, by which is meant that the relative proportions of HB stars existing on the hotter end of the RR Lyr gap, within the gap, and to the cooler end of the gap varies sharply from cluster to cluster. The underlying cause of different HB morphologies is a long-standing problem in stellar astrophysics. Chemical composition is one factor (usually in the sense that more metal-poor clusters have bluer HBs), but other stellar properties like age, rotation and helium content have also been suggested as affecting HB morphology. This has sometimes been called the "Second Parameter Problem" for globular clusters, because there exist pairs of globular clusters which seem to have the same metallicity yet have very different HB morphologies; one such pair is NGC 288 (which has a very blue HB) and NGC 362 (which has a rather red HB). The label "second parameter" acknowledges that some unknown physical effect is responsible for HB morphology differences in clusters that seem otherwise identical. [7]

Relationship to the red clump

A related class of stars is the clump giants, those belonging to the so-called red clump, which are the relatively younger (and hence more massive) and usually more metal-rich population I counterparts to HB stars (which belong to population II). Both HB stars and clump giants are fusing helium to carbon in their cores, but differences in the structure of their outer layers result in the different types of stars having different radii, effective temperatures, and color. Since color index is the horizontal coordinate in a Hertzsprung–Russell diagram, the different types of star appear in different parts of the CMD despite their common energy source. In effect, the red clump represents one extreme of horizontal-branch morphology: all the stars are at the red end of the horizontal branch, and may be difficult to distinguish from stars ascending the red-giant branch for the first time. [12]

Related Research Articles

<span class="mw-page-title-main">Main sequence</span> Continuous band of stars that appears on plots of stellar color versus brightness

In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hertzsprung and Henry Norris Russell. Stars on this band are known as main-sequence stars or dwarf stars. These are the most numerous true stars in the universe and include the Sun.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is an astronomical object comprising a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Supergiant</span> Type of star that is massive and luminous

Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.

<span class="mw-page-title-main">Red supergiant</span> Stars with a supergiant luminosity class with a spectral type of K or M

Red supergiants (RSGs) are stars with a supergiant luminosity class of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.

<span class="mw-page-title-main">Blue giant</span> Hot, giant star of early spectral type

In astronomy, a blue giant is a hot star with a luminosity class of III (giant) or II. In the standard Hertzsprung–Russell diagram, these stars lie above and to the right of the main sequence.

<span class="mw-page-title-main">Giant star</span> Type of star, larger and brighter than the Sun

A giant star is a star with substantially larger radius and luminosity than a main-sequence star of the same surface temperature. They lie above the main sequence on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms giant and dwarf were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905.

A carbon star is typically an asymptotic giant branch star, a luminous red giant, whose atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "sooty" atmosphere and a strikingly ruby red appearance. There are also some dwarf and supergiant carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them.

<span class="mw-page-title-main">Asymptotic giant branch</span> Stars powered by fusion of hydrogen and helium in shell with an inactive core of carbon and oxygen

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives.

<span class="mw-page-title-main">Red-giant branch</span> Portion of the giant branch before helium ignition

The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass stars. Red-giant-branch stars have an inert helium core surrounded by a shell of hydrogen fusing via the CNO cycle. They are K- and M-class stars much larger and more luminous than main-sequence stars of the same temperature.

<span class="mw-page-title-main">Tip of the red-giant branch</span> Primary distance indicator used in astronomy

Tip of the red-giant branch (TRGB) is a primary distance indicator used in astronomy. It uses the luminosity of the brightest red-giant-branch stars in a galaxy as a standard candle to gauge the distance to that galaxy. It has been used in conjunction with observations from the Hubble Space Telescope to determine the relative motions of the Local Cluster of galaxies within the Local Supercluster. Ground-based, 8-meter-class telescopes like the VLT are also able to measure the TRGB distance within reasonable observation times in the local universe.

<span class="mw-page-title-main">Subgiant</span> Type of star larger than main-sequence but smaller than a giant

A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

<span class="mw-page-title-main">Red clump</span> Clustering of stars in astronomy diagram

The red clump is a clustering of red giants in the Hertzsprung–Russell diagram at around 5,000 K and absolute magnitude (MV) +0.5, slightly hotter than most red-giant-branch stars of the same luminosity. It is visible as a denser region of the red-giant branch or a bulge towards hotter temperatures. It is prominent in many galactic open clusters, and it is also noticeable in many intermediate-age globular clusters and in nearby field stars.

<span class="mw-page-title-main">La Superba</span> Variable star in the constellation Canes Venatici

La Superba is a strikingly red giant star in the constellation Canes Venatici. It is a carbon star and semiregular variable.

<span class="mw-page-title-main">Yellow supergiant</span> Star that has a supergiant luminosity class, with a spectral type of F or G

A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class. They are stars that have evolved away from the main sequence, expanding and becoming more luminous.

<span class="mw-page-title-main">Red giant</span> Type of large cool star that has exhausted its core hydrogen

A red giant is a luminous giant star of low or intermediate mass in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.

<span class="mw-page-title-main">Hertzsprung–Russell diagram</span> Scatter plot of stars showing the relationship of luminosity to stellar classification

The Hertzsprung–Russell diagram is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities versus their stellar classifications or effective temperatures. The diagram was created independently in 1911 by Ejnar Hertzsprung and by Henry Norris Russell in 1913, and represented a major step towards an understanding of stellar evolution.

A stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of hydrogen into helium. This energy in turn counterbalances the mass of the star pressing inward; a process that self-maintains the conditions in thermal and hydrostatic equilibrium. The minimum temperature required for stellar hydrogen fusion exceeds 107 K (10 MK), while the density at the core of the Sun is over 100 g/cm3. The core is surrounded by the stellar envelope, which transports energy from the core to the stellar atmosphere where it is radiated away into space.

<span class="mw-page-title-main">Blue loop</span> Stage of stellar evolution

In the field of stellar evolution, a blue loop is a stage in the life of an evolved star where it changes from a cool star to a hotter one before cooling again. The name derives from the shape of the evolutionary track on a Hertzsprung–Russell diagram which forms a loop towards the blue side of the diagram.

<span class="mw-page-title-main">Super-AGB star</span> Stars that have properties between Asymptotic Giant Branch stars and red supergiants

A super-AGB star is a star with a mass intermediate between those that end their lives as a white dwarf and those that end with a core collapse supernova, and properties intermediate between asymptotic giant branch (AGB) stars and red supergiants. They have initial masses of 7.5–9.25 M in stellar-evolutionary models, but have exhausted their core hydrogen and helium, left the main sequence, and expanded to become large, cool, and luminous.

References

  1. Arp, H. C.; Baum, W. A.; Sandage, A. R. (1952), "The HR diagrams for the globular clusters M 92 and M 3", Astronomical Journal , 57: 4–5, Bibcode:1952AJ.....57....4A, doi:10.1086/106674
  2. Sandage, A. R. (1953), "The color-magnitude diagram for the globular cluster M 3", Astronomical Journal , 58: 61–75, Bibcode:1953AJ.....58...61S, doi:10.1086/106822
  3. 1 2 3 Karttunen, Hannu; Oja, Heikki (2007), Fundamental astronomy (5th ed.), Springer, p. 249, ISBN   978-3-540-34143-7
  4. "Post Main Sequence Stars". Australia Telescope Outreach and Education. Retrieved 2 December 2012.
  5. Salaris, Maurizio; Cassisi, Santi (2005). "Evolution of Stars and Stellar Populations" . Evolution of Stars and Stellar Populations: 400. Bibcode:2005essp.book.....S.
  6. Rudolf Kippenhahn; Alfred Weigert; Achim Weiss (31 October 2012). Stellar Structure and Evolution. Springer Science & Business Media. pp. 408–. ISBN   978-3-642-30304-3.
  7. 1 2 Lee, Young-Wook; Demarque, Pierre; Zinn, Robert (1994). "The Horizontal-Branch Stars in Globular Clusters. II. The Second Parameter Phenomenon". The Astrophysical Journal. 423: 248. Bibcode:1994ApJ...423..248L. doi: 10.1086/173803 .
  8. Randall, S. K.; Calamida, A.; Fontaine, G.; Bono, G.; Brassard, P. (2011). "RAPIDLY PULSATING HOT SUBDWARFS IN ω CENTAURI: A NEW INSTABILITY STRIP ON THE EXTREME HORIZONTAL BRANCH?". The Astrophysical Journal. 737 (2): L27. Bibcode:2011ApJ...737L..27R. doi: 10.1088/2041-8205/737/2/L27 .
  9. Jeffery, C. S. (2008). "Hydrogen-Deficient Stars: An Introduction". Hydrogen-Deficient Stars. 391: 3. Bibcode:2008ASPC..391....3J.
  10. American Association of Variable Star Observers. "Types of Variables". Archived from the original on 17 October 2018. Retrieved 12 March 2011.
  11. David Stevenson (9 May 2015). The Complex Lives of Star Clusters. Springer. pp. 70–. ISBN   978-3-319-14234-0.
  12. Hannu Karttunen; Pekka Kröger; Heikki Oja; Markku Poutanen; Karl Johan Donner (9 August 2007). Fundamental Astronomy. Springer Science & Business Media. pp. 249–. ISBN   978-3-540-34144-4.