Iron star

Last updated

In astronomy, an iron star is a hypothetical type of compact star.

Contents

Unrelatedly, the term "iron star" is also used for blue supergiants which have a forest of forbidden FeII lines in their spectra. They are potentially quiescent hot luminous blue variables. Eta Carinae has been described as a prototypical example. [1] [2]

Formation

Formation of iron stars
Event typeFormation of a hypothetical type of compact star
Datec. 101500 years from now
Durationc. 101026 to 101076 years from now
Epoch Extremely far future
Source Fusion occurring via quantum tunnelling causing nuclei to fuse into iron-56 nuclei
Notable featuresOnly a possibility if protons do not decay
Followed byFormation of neutron stars and black holes

An iron star is a hypothetical type of compact star that could occur in the universe in the extremely far future, after perhaps 101500 years.

The premise behind the formation of iron stars states that cold fusion occurring via quantum tunnelling would cause the light nuclei in ordinary matter to fuse into iron-56 nuclei. Fission and alpha-particle emission would then make heavy nuclei decay into iron, converting stellar-mass objects to cold spheres of iron. [3] The formation of these stars is only a possibility if protons do not decay. Though the surface of a neutron star may be iron according to some predictions, it is distinct from an iron star.

By the end of 101026 to 101076 years, iron stars would have collapsed into neutron stars and black holes. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Nebula</span> Body of interstellar clouds

A nebula is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter and eventually become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

Neutronium is a hypothetical substance made purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 for the hypothetical "element of atomic number zero" that he placed at the head of the periodic table. However, the meaning of the term has changed over time, and from the last half of the 20th century onward it has been also used to refer to extremely dense substances resembling the neutron-degenerate matter theorized to exist in the cores of neutron stars; hereinafter "degenerate neutronium" will refer to this.

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. Stars that collapse into neutron stars have a total mass of between 10 and 25 solar masses (M), or possibly more for those that are especially rich in elements heavier than hydrogen and helium.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Supernova</span> Astrophysical phenomenon

A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">SN 1987A</span> 1987 supernova event in the constellation Dorado

SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987 and was designated "SN 1987A" as the first supernova discovered that year. Its brightness peaked in May of that year, with an apparent magnitude of about 3.

<span class="mw-page-title-main">Nucleosynthesis</span> Process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons

Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium remains small, so that the universe still has approximately the same composition.

<span class="mw-page-title-main">Andromeda Galaxy</span> Barred spiral galaxy in the Local Group

The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a D25 isophotal diameter of about 46.56 kiloparsecs (152,000 light-years) and is approximately 765 kpc (2.5 million light-years) from Earth. The galaxy's name stems from the area of Earth's sky in which it appears, the constellation of Andromeda, which itself is named after the princess who was the wife of Perseus in Greek mythology.

A quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure have forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks.

In astronomy, the term compact object refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.

<span class="mw-page-title-main">Wolf–Rayet star</span> Heterogeneous class of stars with unusual spectra

Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. The surface temperatures of known Wolf–Rayet stars range from 20,000 K to around 210,000 K, hotter than almost all other kinds of stars. They were previously called W-type stars referring to their spectral classification.

<i>r</i>-process Nucleosynthesis pathway

In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced by the p-process and s-process. The r-process usually synthesizes the most neutron-rich stable isotopes of each heavy element. The r-process can typically synthesize the heaviest four isotopes of every heavy element; of these, the heavier two are called r-only nuclei because they are created exclusively via the r-process. Abundance peaks for the r-process occur near mass numbers A = 82, A = 130 and A = 196.

The slow neutron-capture process, or s-process, is a series of reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The s-process is responsible for the creation (nucleosynthesis) of approximately half the atomic nuclei heavier than iron.

<span class="mw-page-title-main">Outline of astronomy</span> Overview of the scientific field of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

<span class="mw-page-title-main">Iron-56</span> Isotope of iron

Iron-56 (56Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56.

<span class="mw-page-title-main">Future of an expanding universe</span> Future scenario if the expansion of the universe will continue forever or not

Current observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".

Strange matter is quark matter containing strange quarks. In extreme environments, strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers, as in the hypothetical strange stars. At high enough density, strange matter is expected to be color superconducting.

<span class="mw-page-title-main">AE Andromedae</span> Star in the constellation Andromeda

AE Andromedae is a luminous blue variable (LBV), a type of variable star. The star is one of the most luminous variables in M31, the Andromeda Galaxy.

<span class="mw-page-title-main">AF Andromedae</span> Luminous blue variable star in the constellation Andromeda

AF Andromedae is a luminous blue variable (LBV), a type of variable star. The star is one of the most luminous variables in M31, the Andromeda Galaxy.

References

  1. Walborn, Nolan R.; Fitzpatrick, Edward L. (2000). "The OB Zoo: A Digital Atlas of Peculiar Spectra". The Publications of the Astronomical Society of the Pacific. 112 (767): 50. Bibcode:2000PASP..112...50W. doi: 10.1086/316490 .
  2. Clark, J. S.; Castro, N.; Garcia, M.; Herrero, A.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Smith, K. T. (2012). "On the nature of candidate luminous blue variables in M 33". Astronomy & Astrophysics. 541: A146. arXiv: 1202.4409 . Bibcode:2012A&A...541A.146C. doi:10.1051/0004-6361/201118440. S2CID   17900583.
  3. 1 2 Dyson, Freeman J. (1979). "Time without end: Physics and biology in an open universe". Reviews of Modern Physics . 51 (3): 447–460. Bibcode:1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447.