Stellar rotation

Last updated
This illustration shows the oblate appearance of the star Achernar caused by rapid rotation. Achernar.svg
This illustration shows the oblate appearance of the star Achernar caused by rapid rotation.

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

Contents

The rotation of a star produces an equatorial bulge due to centrifugal force. As stars are not solid bodies, they can also undergo differential rotation. Thus the equator of the star can rotate at a different angular velocity than the higher latitudes. These differences in the rate of rotation within a star may have a significant role in the generation of a stellar magnetic field. [1]

In its turn, the magnetic field of a star interacts with the stellar wind. As the wind moves away from the star its angular speed decreases. The magnetic field of the star interacts with the wind, which applies a drag to the stellar rotation. As a result, angular momentum is transferred from the star to the wind, and over time this gradually slows the star's rate of rotation.

Measurement

Unless a star is being observed from the direction of its pole, sections of the surface have some amount of movement toward or away from the observer. The component of movement that is in the direction of the observer is called the radial velocity. For the portion of the surface with a radial velocity component toward the observer, the radiation is shifted to a higher frequency because of Doppler shift. Likewise the region that has a component moving away from the observer is shifted to a lower frequency. When the absorption lines of a star are observed, this shift at each end of the spectrum causes the line to broaden. [2] However, this broadening must be carefully separated from other effects that can increase the line width.

This star has inclination
i
{\displaystyle i}
to the line-of-sight of an observer on the Earth and rotational velocity ve at the equator. V sin i.png
This star has inclination to the line-of-sight of an observer on the Earth and rotational velocity ve at the equator.

The component of the radial velocity observed through line broadening depends on the inclination of the star's pole to the line of sight. The derived value is given as , where is the rotational velocity at the equator and is the inclination. However, is not always known, so the result gives a minimum value for the star's rotational velocity. That is, if is not a right angle, then the actual velocity is greater than . [2] This is sometimes referred to as the projected rotational velocity. In fast rotating stars polarimetry offers a method of recovering the actual velocity rather than just the rotational velocity; this technique has so far been applied only to Regulus. [3]

For giant stars, the atmospheric microturbulence can result in line broadening that is much larger than effects of rotational, effectively drowning out the signal. However, an alternate approach can be employed that makes use of gravitational microlensing events. These occur when a massive object passes in front of the more distant star and functions like a lens, briefly magnifying the image. The more detailed information gathered by this means allows the effects of microturbulence to be distinguished from rotation. [4]

If a star displays magnetic surface activity such as starspots, then these features can be tracked to estimate the rotation rate. However, such features can form at locations other than equator and can migrate across latitudes over the course of their life span, so differential rotation of a star can produce varying measurements. Stellar magnetic activity is often associated with rapid rotation, so this technique can be used for measurement of such stars. [5] Observation of starspots has shown that these features can actually vary the rotation rate of a star, as the magnetic fields modify the flow of gases in the star. [6]

Physical effects

Equatorial bulge

Gravity tends to contract celestial bodies into a perfect sphere, the shape where all the mass is as close to the center of gravity as possible. But a rotating star is not spherical in shape, it has an equatorial bulge.

As a rotating proto-stellar disk contracts to form a star its shape becomes more and more spherical, but the contraction doesn't proceed all the way to a perfect sphere. At the poles all of the gravity acts to increase the contraction, but at the equator the effective gravity is diminished by the centrifugal force. The final shape of the star after star formation is an equilibrium shape, in the sense that the effective gravity in the equatorial region (being diminished) cannot pull the star to a more spherical shape. The rotation also gives rise to gravity darkening at the equator, as described by the von Zeipel theorem.

An extreme example of an equatorial bulge is found on the star Regulus A (α Leonis A). The equator of this star has a measured rotational velocity of 317 ± 3 km/s. This corresponds to a rotation period of 15.9 hours, which is 86% of the velocity at which the star would break apart. The equatorial radius of this star is 32% larger than polar radius. [7] Other rapidly rotating stars include Alpha Arae, Pleione, Vega and Achernar.

The break-up velocity of a star is an expression that is used to describe the case where the centrifugal force at the equator is equal to the gravitational force. For a star to be stable the rotational velocity must be below this value. [8]

Differential rotation

Surface differential rotation is observed on stars such as the Sun when the angular velocity varies with latitude. Typically the angular velocity decreases with increasing latitude. However the reverse has also been observed, such as on the star designated HD 31993. [9] [10] The first such star, other than the Sun, to have its differential rotation mapped in detail is AB Doradus. [1] [11]

The underlying mechanism that causes differential rotation is turbulent convection inside a star. Convective motion carries energy toward the surface through the mass movement of plasma. This mass of plasma carries a portion of the angular velocity of the star. When turbulence occurs through shear and rotation, the angular momentum can become redistributed to different latitudes through meridional flow. [12] [13]

The interfaces between regions with sharp differences in rotation are believed to be efficient sites for the dynamo processes that generate the stellar magnetic field. There is also a complex interaction between a star's rotation distribution and its magnetic field, with the conversion of magnetic energy into kinetic energy modifying the velocity distribution. [1]

Rotation braking

During formation

Stars are believed to form as the result of a collapse of a low-temperature cloud of gas and dust. As the cloud collapses, conservation of angular momentum causes any small net rotation of the cloud to increase, forcing the material into a rotating disk. At the dense center of this disk a protostar forms, which gains heat from the gravitational energy of the collapse.

As the collapse continues, the rotation rate can increase to the point where the accreting protostar can break up due to centrifugal force at the equator. Thus the rotation rate must be braked during the first 100,000 years to avoid this scenario. One possible explanation for the braking is the interaction of the protostar's magnetic field with the stellar wind in magnetic braking. The expanding wind carries away the angular momentum and slows down the rotation rate of the collapsing protostar. [14] [15]

Average
rotational
velocities [16]
Stellar
class
ve
(km/s)
O5190
B0200
B5210
A0190
A5160
F095
F525
G012

Most main-sequence stars with a spectral class between O5 and F5 have been found to rotate rapidly. [7] [17] For stars in this range, the measured rotation velocity increases with mass. This increase in rotation peaks among young, massive B-class stars. "As the expected life span of a star decreases with increasing mass, this can be explained as a decline in rotational velocity with age."[ citation needed ]

After formation

For main-sequence stars, the decline in rotation can be approximated by a mathematical relation:

where is the angular velocity at the equator and is the star's age. [18] This relation is named Skumanich's law after Andrew P. Skumanich who discovered it in 1972. [19] [20] [21] Gyrochronology is the determination of a star's age based on the rotation rate, calibrated using the Sun. [22]

Stars slowly lose mass by the emission of a stellar wind from the photosphere. The star's magnetic field exerts a torque on the ejected matter, resulting in a steady transfer of angular momentum away from the star. Stars with a rate of rotation greater than 15 km/s also exhibit more rapid mass loss, and consequently a faster rate of rotation decay. Thus as the rotation of a star is slowed because of braking, there is a decrease in rate of loss of angular momentum. Under these conditions, stars gradually approach, but never quite reach, a condition of zero rotation. [23]

At the end of the main sequence

Ultracool dwarfs and brown dwarfs experience faster rotation as they age, due to gravitational contraction. These objects also have magnetic fields similar to the coolest stars. However, the discovery of rapidly rotating brown dwarfs such as the T6 brown dwarf WISEPC J112254.73+255021.5 [24] lends support to theoretical models that show that rotational braking by stellar winds is over 1000 times less effective at the end of the main sequence. [25]

Close binary systems

A close binary star system occurs when two stars orbit each other with an average separation that is of the same order of magnitude as their diameters. At these distances, more complex interactions can occur, such as tidal effects, transfer of mass and even collisions. Tidal interactions in a close binary system can result in modification of the orbital and rotational parameters. The total angular momentum of the system is conserved, but the angular momentum can be transferred between the orbital periods and the rotation rates. [26]

Each of the members of a close binary system raises tides on the other through gravitational interaction. However the bulges can be slightly misaligned with respect to the direction of gravitational attraction. Thus the force of gravity produces a torque component on the bulge, resulting in the transfer of angular momentum (tidal acceleration). This causes the system to steadily evolve, although it can approach a stable equilibrium. The effect can be more complex in cases where the axis of rotation is not perpendicular to the orbital plane. [26]

For contact or semi-detached binaries, the transfer of mass from a star to its companion can also result in a significant transfer of angular momentum. The accreting companion can spin up to the point where it reaches its critical rotation rate and begins losing mass along the equator. [27]

Degenerate stars

After a star has finished generating energy through thermonuclear fusion, it evolves into a more compact, degenerate state. During this process the dimensions of the star are significantly reduced, which can result in a corresponding increase in angular velocity.

White dwarf

A white dwarf is a star that consists of material that is the by-product of thermonuclear fusion during the earlier part of its life, but lacks the mass to burn those more massive elements. It is a compact body that is supported by a quantum mechanical effect known as electron degeneracy pressure that will not allow the star to collapse any further. Generally most white dwarfs have a low rate of rotation, most likely as the result of rotational braking or by shedding angular momentum when the progenitor star lost its outer envelope. [28] (See planetary nebula.)

A slow-rotating white dwarf star can not exceed the Chandrasekhar limit of 1.44 solar masses without collapsing to form a neutron star or exploding as a Type Ia supernova. Once the white dwarf reaches this mass, such as by accretion or collision, the gravitational force would exceed the pressure exerted by the electrons. If the white dwarf is rotating rapidly, however, the effective gravity is diminished in the equatorial region, thus allowing the white dwarf to exceed the Chandrasekhar limit. Such rapid rotation can occur, for example, as a result of mass accretion that results in a transfer of angular momentum. [29]

Neutron star

The neutron star (center) emits a beam of radiation from its magnetic poles. The beams are swept along a conic surface around the axis of rotation. Pulsar schematic.jpg
The neutron star (center) emits a beam of radiation from its magnetic poles. The beams are swept along a conic surface around the axis of rotation.

A neutron star is a highly dense remnant of a star that is primarily composed of neutrons—a particle that is found in most atomic nuclei and has no net electrical charge. The mass of a neutron star is in the range of 1.2 to 2.1 times the mass of the Sun. As a result of the collapse, a newly formed neutron star can have a very rapid rate of rotation; on the order of a hundred rotations per second.

Pulsars are rotating neutron stars that have a magnetic field. A narrow beam of electromagnetic radiation is emitted from the poles of rotating pulsars. If the beam sweeps past the direction of the Solar System then the pulsar will produce a periodic pulse that can be detected from the Earth. The energy radiated by the magnetic field gradually slows down the rotation rate, so that older pulsars can require as long as several seconds between each pulse. [30]

Black hole

A black hole is an object with a gravitational field that is sufficiently powerful that it can prevent light from escaping. When they are formed from the collapse of a rotating mass, they retain all of the angular momentum that is not shed in the form of ejected gas. This rotation causes the space within an oblate spheroid-shaped volume, called the "ergosphere", to be dragged around with the black hole. Mass falling into this volume gains energy by this process and some portion of the mass can then be ejected without falling into the black hole. When the mass is ejected, the black hole loses angular momentum (the "Penrose process"). [31]

See also

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. They have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. Stars that collapse into neutron stars have a total mass of between 10 and 25 solar masses (M), or possibly more for those that are especially rich in elements heavier than hydrogen and helium.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

Differential rotation is seen when different parts of a rotating object move with different angular velocities at different latitudes and/or depths of the body and/or in time. This indicates that the object is not rigid. In fluid objects, such as accretion disks, this leads to shearing. Galaxies and protostars usually show differential rotation; examples in the Solar System include the Sun, Jupiter and Saturn.

<span class="mw-page-title-main">Wolf 359</span> Red dwarf in the constellation Leo

Wolf 359 is a red dwarf star located in the constellation Leo, near the ecliptic. At a distance of 7.86 light-years from Earth, it has an apparent magnitude of 13.54 and can only be seen with a large telescope. Wolf 359 is one of the nearest stars to the Sun with only the Alpha Centauri system, Barnard's Star, and the brown dwarfs Luhman 16 and WISE 0855−0714 known to be closer. Its proximity to Earth has led to its mention in several works of fiction.

<span class="mw-page-title-main">Nebular hypothesis</span> Astronomical theory about the Solar System

The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System. It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

<span class="mw-page-title-main">Rotation period (astronomy)</span> Time that it takes to complete one rotation relative to the background stars

In astronomy, the rotation period or spin period of a celestial object has two definitions. The first one corresponds to the sidereal rotation period, i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars. The other type of commonly used "rotation period" is the object's synodic rotation period, which may differ, by a fraction of a rotation or more than one rotation, to accommodate the portion of the object's orbital period around a star or another body during one day.

<span class="mw-page-title-main">Accretion (astrophysics)</span> Accumulation of particles into a massive object by gravitationally attracting more matter

In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, into an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.

Kappa<sup>1</sup> Ceti Variable yellow dwarf star in the constellation Cetus

Kappa1 Ceti, Latinized from κ1 Ceti, is a variable yellow dwarf star approximately 30 light-years away in the equatorial constellation of Cetus.

<span class="mw-page-title-main">Stellar magnetic field</span> Magnetic field generated inside a star

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

Gyrochronology is a method for estimating the age of a low-mass (cool) main sequence star from its rotation period. The term is derived from the Greek words gyros, chronos and logos, roughly translated as rotation, age, and study respectively. It was coined in 2003 by Sydney Barnes to describe the associated procedure for deriving stellar ages, and developed extensively in empirical form in 2007.

The magnetorotational instability (MRI) is a fluid instability that causes an accretion disk orbiting a massive central object to become turbulent. It arises when the angular velocity of a conducting fluid in a magnetic field decreases as the distance from the rotation center increases. It is also known as the Velikhov–Chandrasekhar instability or Balbus–Hawley instability in the literature, not to be confused with the electrothermal Velikhov instability. The MRI is of particular relevance in astrophysics where it is an important part of the dynamics in accretion disks.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

<span class="mw-page-title-main">Magnetic braking (astronomy)</span> Theory to explain slowing of a stars spin

Magnetic braking is a theory explaining the loss of stellar angular momentum due to material getting captured by the stellar magnetic field and thrown out at great distance from the surface of the star. It plays an important role in the evolution of binary star systems.

Gliese 521 is a double star in the northern constellation of Canes Venatici. The system is located at a distance of 43.6 light-years from the Sun based on parallax measurements, but is drawing closer with a radial velocity of −65.6 km/s. It is predicted to come as close as 15.70 light-years from the Sun in 176,900 years. This star is too faint to be visible to the naked eye, having an apparent visual magnitude of +10.26 and an absolute magnitude of 10.24.

<span class="mw-page-title-main">Accretion disk</span> Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

<span class="mw-page-title-main">Circumstellar disc</span> Accumulation of matter around a star

A circumstellar disc is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place, and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.

SW Sextantis variable stars are a kind of cataclysmic variable star; they are double-star systems in which there is mass transfer from a red dwarf to a white dwarf forming a stable accretion disc around the latter. Unlike other non-magnetic cataclysmic variables, the emission lines from hydrogen and helium are not doubled, except briefly near phase 0.5.

References

  1. 1 2 3 Donati, Jean-François (November 5, 2003). "Differential rotation of stars other than the Sun". Laboratoire d’Astrophysique de Toulouse. Retrieved 2007-06-24.
  2. 1 2 Shajn, G.; Struve, O. (1929). "On the rotation of the stars". Monthly Notices of the Royal Astronomical Society . 89 (3): 222–239. Bibcode:1929MNRAS..89..222S. doi: 10.1093/mnras/89.3.222 .
  3. Cotton, Daniel V; Bailey, Jeremy; Howarth, Ian D; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Lucas, P. W; Hough, J. H (2017). "Polarization due to rotational distortion in the bright star Regulus". Nature Astronomy. 1 (10): 690–696. arXiv: 1804.06576 . Bibcode:2017NatAs...1..690C. doi:10.1038/s41550-017-0238-6. S2CID   53560815.
  4. Gould, Andrew (1997). "Measuring the Rotation Speed of Giant Stars from Gravitational Microlensing". Astrophysical Journal. 483 (1): 98–102. arXiv: astro-ph/9611057 . Bibcode:1997ApJ...483...98G. doi:10.1086/304244. S2CID   16920051.
  5. Soon, W.; Frick, P.; Baliunas, S. (1999). "On the rotation of the stars". The Astrophysical Journal. 510 (2): L135–L138. arXiv: astro-ph/9811114 . Bibcode:1999ApJ...510L.135S. doi:10.1086/311805. S2CID   9517804.
  6. Collier Cameron, A.; Donati, J.-F. (2002). "Doin' the twist: secular changes in the surface differential rotation on AB Doradus". Monthly Notices of the Royal Astronomical Society. 329 (1): L23–L27. arXiv: astro-ph/0111235 . Bibcode:2002MNRAS.329L..23C. doi: 10.1046/j.1365-8711.2002.05147.x . S2CID   11292613.
  7. 1 2 McAlister, H. A.; ten Brummelaar, T. A.; et al. (2005). "First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator Alpha Leonis (Regulus)". The Astrophysical Journal. 628 (1): 439–452. arXiv: astro-ph/0501261 . Bibcode:2005ApJ...628..439M. doi:10.1086/430730. S2CID   6776360.
  8. Hardorp, J.; Strittmatter, P. A. (September 8–11, 1969). "Rotation and Evolution of be Stars". Proceedings of IAU Colloq. 4. Ohio State University, Columbus, Ohio: Gordon and Breach Science Publishers. p. 48. Bibcode:1970stro.coll...48H.
  9. Kitchatinov, L. L.; Rüdiger, G. (2004). "Anti-solar differential rotation". Astronomische Nachrichten. 325 (6): 496–500. arXiv: astro-ph/0504173 . Bibcode:2004AN....325..496K. doi:10.1002/asna.200410297. S2CID   59497102.
  10. Ruediger, G.; von Rekowski, B.; Donahue, R. A.; Baliunas, S. L. (1998). "Differential Rotation and Meridional Flow for Fast-rotating Solar-Type Stars". Astrophysical Journal. 494 (2): 691–699. Bibcode:1998ApJ...494..691R. doi: 10.1086/305216 .
  11. Donati, J.-F.; Collier Cameron, A. (1997). "Differential rotation and magnetic polarity patterns on AB Doradus". Monthly Notices of the Royal Astronomical Society. 291 (1): 1–19. Bibcode:1997MNRAS.291....1D. doi: 10.1093/mnras/291.1.1 .
  12. Korab, Holly (June 25, 1997). "NCSA Access: 3D Star Simulation". National Center for Supercomputing Applications. Archived from the original on 2012-04-15. Retrieved 2007-06-27.
  13. Küker, M.; Rüdiger, G. (2005). "Differential rotation on the lower main sequence". Astronomische Nachrichten. 326 (3): 265–268. arXiv: astro-ph/0504411 . Bibcode:2005AN....326..265K. doi:10.1002/asna.200410387. S2CID   119386346.
  14. Ferreira, J.; Pelletier, G.; Appl, S. (2000). "Reconnection X-winds: spin-down of low-mass protostars". Monthly Notices of the Royal Astronomical Society. 312 (2): 387–397. Bibcode:2000MNRAS.312..387F. doi: 10.1046/j.1365-8711.2000.03215.x .
  15. Devitt, Terry (January 31, 2001). "What Puts The Brakes On Madly Spinning Stars?". University of Wisconsin-Madison. Retrieved 2007-06-27.
  16. McNally, D. (1965). "The distribution of angular momentum among main sequence stars". The Observatory. 85: 166–169. Bibcode:1965Obs....85..166M.
  17. Peterson, Deane M.; et al. (2004). "Resolving the effects of rotation in early type stars". New Frontiers in Stellar Interferometry, Proceedings of SPIE Volume 5491. Bellingham, Washington, USA: The International Society for Optical Engineering. p. 65. Bibcode:2004SPIE.5491...65P. CiteSeerX   10.1.1.984.2939 . doi:10.1117/12.552020.
  18. Tassoul, Jean-Louis (2000). Stellar Rotation (PDF). Cambridge, MA: Cambridge University Press. ISBN   978-0-521-77218-1 . Retrieved 2007-06-26.
  19. Skumanich, Andrew P. (1972). "Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion". The Astrophysical Journal. 171: 565. Bibcode:1972ApJ...171..565S. doi:10.1086/151310.
  20. Skumanich, Andrew P.; Eddy, J. A. (1981). Bonnet, R. M.; Dupree, A. K. (eds.). Aspects of Long-Term Variability in Sun and Stars – In: Solar Phenomena In Stars and Stellar Systems. Hingham, MA: D. Reidel. pp. 349–398.
  21. Skumanich, Andrew P. (2023). "My Rewarding Life in Science". Solar Physics. 298 (9): 110. arXiv: 2309.16728 . Bibcode:2023SoPh..298..110S. doi:10.1007/s11207-023-02199-2 . Retrieved 2024-06-09.
  22. Barnes, Sydney A. (2007). "Ages for illustrative field stars using gyrochronology: viability, limitations and errors". The Astrophysical Journal. 669 (2): 1167–1189. arXiv: 0704.3068 . Bibcode:2007ApJ...669.1167B. doi:10.1086/519295. S2CID   14614725.
  23. Nariai, Kyoji (1969). "Mass Loss from Coronae and Its Effect upon Stellar Rotation". Astrophysics and Space Science. 3 (1): 150–159. Bibcode:1969Ap&SS...3..150N. doi:10.1007/BF00649601. hdl: 2060/19680026259 .
  24. Route, M.; Wolszczan, A. (20 April 2016). "Radio-flaring from the T6 Dwarf WISEPC J112254.73+255021.5 with A Possible Ultra-short Periodicity". The Astrophysical Journal Letters. 821 (2): L21. arXiv: 1604.04543 . Bibcode:2016ApJ...821L..21R. doi: 10.3847/2041-8205/821/2/L21 . S2CID   118478221.
  25. Route, M. (10 July 2017). "Is WISEP J060738.65+242953.4 Really a Magnetically Active, Pole-on L Dwarf?". The Astrophysical Journal. 843 (2): 115. arXiv: 1706.03010 . Bibcode:2017ApJ...843..115R. doi: 10.3847/1538-4357/aa78ab . S2CID   119056418.
  26. 1 2 Hut, P. (1999). "Tidal evolution in close binary systems". Astronomy and Astrophysics. 99 (1): 126–140. Bibcode:1981A&A....99..126H.
  27. Weaver, D.; Nicholson, M. (December 4, 1997). "One Star's Loss is Another's Gain: Hubble Captures Brief Moment in Life of Lively Duo". NASA Hubble. Retrieved 2007-07-03.
  28. Willson, L. A.; Stalio, R. (1990). Angular Momentum and Mass Loss for Hot Stars (1st ed.). Springer. pp. 315–16. ISBN   978-0-7923-0881-2.
  29. Yoon, S.-C.; Langer, N. (2004). "Presupernova evolution of accreting white dwarfs with rotation". Astronomy and Astrophysics. 419 (2): 623–644. arXiv: astro-ph/0402287 . Bibcode:2004A&A...419..623Y. doi:10.1051/0004-6361:20035822. S2CID   2963085.
  30. Lorimer, D. R. (August 28, 1998). "Binary and Millisecond Pulsars". Living Reviews in Relativity. 1 (1). Max-Planck-Gesellschaft: 10. Bibcode:1998LRR.....1...10L. doi: 10.12942/lrr-1998-10 . PMC   5567244 . PMID   28937181.
  31. Begelman, Mitchell C. (2003). "Evidence for Black Holes". Science. 300 (5627): 1898–1903. Bibcode:2003Sci...300.1898B. doi:10.1126/science.1085334. PMID   12817138. S2CID   46107747.