In astrophysics and condensed matter physics, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quantum degeneracy pressure.
The term "degenerate" here is not related to degenerate energy levels, but to Fermi–Dirac statistics close to the zero-temperature limit [1] (temperatures much smaller than the Fermi temperature, which for metals is about 10000 K.)
In metals and in white dwarf stars, electrons can be modeled as a gas of non-interacting electrons confined to a finite volume. Although there are strong electromagnetic forces between the negatively charged electrons, these forces are approximately balanced by the positive nuclei and so can be neglected in the simplest models. The pressure exerted by the electrons is related to their kinetic energy. The degeneracy pressure is most prominent at low temperatures: If electrons were classical particles, the movement of the electrons would cease at absolute zero and the pressure of the electron gas would vanish. However, since electrons are quantum mechanical particles that obey the Pauli exclusion principle, no two electrons can occupy the same state, and it is not possible for all the electrons to have zero kinetic energy. Instead, the confinement makes the allowed energy levels quantized, and the electrons fill them from the bottom upwards. If many electrons are confined to a small volume, on average the electrons have a large kinetic energy, and a large pressure is exerted. [2] [3] : 32–39
In white dwarf stars, the positive nuclei are completely ionized – disassociated from the electrons – and closely packed – a million times more dense than the Sun. At this density gravity exerts immense force pulling the nuclei together. This force is balanced by the electron degeneracy pressure keeping the star stable. [4]
In metals, the positive nuclei are partly ionized and spaced by normal interatomic distances. Gravity has negligible effect; the positive ion cores are attracted to the negatively charge electron gas. This force is balanced by the electron degeneracy pressure. [3] : 410
Electrons are members of a family of particles known as fermions. Fermions, like the proton or the neutron, follow Pauli's principle and Fermi–Dirac statistics. In general, for an ensemble of non-interacting fermions, also known as a Fermi gas, each particle can be treated independently with a single-fermion energy given by the purely kinetic term, where p is the momentum of one particle and m its mass. Every possible momentum state of an electron within this volume up to the Fermi momentum pF being occupied.
The degeneracy pressure at zero temperature can be computed as [5] where V is the total volume of the system and Etot is the total energy of the ensemble. Specifically for the electron degeneracy pressure, m is substituted by the electron mass me and the Fermi momentum is obtained from the Fermi energy, so the electron degeneracy pressure is given by where ρe is the free electron density (the number of free electrons per unit volume). For the case of a metal, one can prove that this equation remains approximately true for temperatures lower than the Fermi temperature, about 106 kelvin.
When particle energies reach relativistic levels, a modified formula is required. The relativistic degeneracy pressure is proportional to ρe4/3.
For the case of electrons in crystalline solid, several approximations are carefully justified to treat the electrons as independent particles. Usual models are the free electron model and the nearly free electron model. In the appropriate systems, the free electron pressure can be calculated; it can be shown that this pressure is an important contributor to the compressibility or bulk modulus of metals. [3] : 39
Electron degeneracy pressure will halt the gravitational collapse of a star if its mass is below the Chandrasekhar limit (1.44 solar masses [6] ). This is the pressure that prevents a white dwarf star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a neutron star or black hole, because the degeneracy pressure provided by the electrons is weaker than the inward pull of gravity.
The Chandrasekhar limit is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about 1.4 M☉ (2.765×1030 kg). The limit was named after Subrahmanyan Chandrasekhar.
In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.
In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma.
Degenerate matter occurs when the Pauli exclusion principle significantly alters a state of matter at low temperature. The term is used in astrophysics to refer to dense stellar objects such as white dwarfs and neutron stars, where thermal pressure alone is not enough to avoid gravitational collapse. The term also applies to metals in the Fermi gas approximation.
In solid state physics, a particle's effective mass is the mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors.
Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926. Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics.
The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature. In a Fermi gas, the lowest occupied state is taken to have zero kinetic energy, whereas in a metal, the lowest occupied state is typically taken to mean the bottom of the conduction band.
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.
Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of the conduction electrons in most metals at sufficiently low temperatures. The theory describes the behavior of many-body systems of particles in which the interactions between particles may be strong. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.
In condensed matter physics, the density of states (DOS) of a system describes the number of allowed modes or states per unit energy range. The density of states is defined as , where is the number of states in the system of volume whose energies lie in the range from to . It is mathematically represented as a distribution by a probability density function, and it is generally an average over the space and time domains of the various states occupied by the system. The density of states is directly related to the dispersion relations of the properties of the system. High DOS at a specific energy level means that many states are available for occupation.
In condensed matter physics, a quasiparticle is a concept used to describe a collective behavior of a group of particles that can be treated as if they were a single particle. Formally, quasiparticles and collective excitations are closely related phenomena that arise when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.
In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the crystalline lattice and from the occupation of electronic energy bands. The existence of a Fermi surface is a direct consequence of the Pauli exclusion principle, which allows a maximum of one electron per quantum state. The study of the Fermi surfaces of materials is called fermiology.
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin and abide by Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas and extended to massive particles by Albert Einstein, who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.
The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. The theory has come to be understood as the semi-classical approximation to modern quantum mechanics. The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli exclusion principle, both of which were premised on Arnold Sommerfeld's enhancements to the Bohr model of the atom.
A quantum fluid refers to any system that exhibits quantum mechanical effects at the macroscopic level such as superfluids, superconductors, ultracold atoms, etc. Typically, quantum fluids arise in situations where both quantum mechanical effects and quantum statistical effects are significant.
In quantum mechanics, the energies of cyclotron orbits of charged particles in a uniform magnetic field are quantized to discrete values, thus known as Landau levels. These levels are degenerate, with the number of electrons per level directly proportional to the strength of the applied magnetic field. It is named after the Soviet physicist Lev Landau.
In materials science, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, they are sometimes referred to as heavy electrons. Heavy fermion materials have a low-temperature specific heat whose linear term is up to 1000 times larger than the value expected from the free electron model. The properties of the heavy fermion compounds often derive from the partly filled f-orbitals of rare-earth or actinide ions, which behave like localized magnetic moments.
Friedel oscillations, named after French physicist Jacques Friedel, arise from localized perturbations in a metallic or semiconductor system caused by a defect in the Fermi gas or Fermi liquid. Friedel oscillations are a quantum mechanical analog to electric charge screening of charged species in a pool of ions. Whereas electrical charge screening utilizes a point entity treatment to describe the make-up of the ion pool, Friedel oscillations describing fermions in a Fermi fluid or Fermi gas require a quasi-particle or a scattering treatment. Such oscillations depict a characteristic exponential decay in the fermionic density near the perturbation followed by an ongoing sinusoidal decay resembling sinc function. In 2020, magnetic Friedel oscillations were observed on a metal surface.
An english translation of the original work of Enrico Fermi on the quantization of the monoatomic ideal gas, is given in this paper