Asteroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the local speed of sound, which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature.
Asteroseismology is closely related to helioseismology, the study of stellar pulsation specifically in the Sun. Though both are based on the same underlying physics, more and qualitatively different information is available for the Sun because its surface can be resolved.
By linearly perturbing the equations defining the mechanical equilibrium of a star (i.e. mass conservation and hydrostatic equilibrium) and assuming that the perturbations are adiabatic, one can derive a system of four differential equations whose solutions give the frequency and structure of a star's modes of oscillation. The stellar structure is usually assumed to be spherically symmetric, so the horizontal (i.e. non-radial) component of the oscillations is described by spherical harmonics, indexed by an angular degree and azimuthal order . In non-rotating stars, modes with the same angular degree must all have the same frequency because there is no preferred axis. The angular degree indicates the number of nodal lines on the stellar surface, so for large values of , the opposing sectors roughly cancel out, making it difficult to detect light variations. As a consequence, modes can only be detected up to an angular degree of about 3 in intensity and about 4 if observed in radial velocity.
By additionally assuming that the perturbation to the gravitational potential is negligible (the Cowling approximation) and that the star's structure varies more slowly with radius than the oscillation mode, the equations can be reduced approximately to one second-order equation for the radial component of the displacement eigenfunction , where is the radial co-ordinate in the star, is the angular frequency of the oscillation mode, is the sound speed inside the star, is the Brunt–Väisälä or buoyancy frequency and is the Lamb frequency. The last two are defined by and respectively. By analogy with the behaviour of simple harmonic oscillators, this implies that oscillating solutions exist when the frequency is either greater or less than both and . We identify the former case as high-frequency pressure modes (p-modes) and the latter as low-frequency gravity modes (g-modes).
This basic separation allows us to determine (to reasonable accuracy) where we expect what kind of mode to resonate in a star. By plotting the curves and (for given ), we expect p-modes to resonate at frequencies below both curves or frequencies above both curves.
Under fairly specific conditions, some stars have regions where heat is transported by radiation and the opacity is a sharply decreasing function of temperature. This opacity bump can drive oscillations through the -mechanism (or Eddington valve). Suppose that, at the beginning of an oscillation cycle, the stellar envelope has contracted. By expanding and cooling slightly, the layer in the opacity bump becomes more opaque, absorbs more radiation, and heats up. This heating causes expansion, further cooling and the layer becomes even more opaque. This continues until the material opacity stops increasing so rapidly, at which point the radiation trapped in the layer can escape. The star contracts and the cycle prepares to commence again. In this sense, the opacity acts like a valve that traps heat in the star's envelope.
Pulsations driven by the -mechanism are coherent and have relatively large amplitudes. It drives the pulsations in many of the longest-known variable stars, including the Cepheid and RR Lyrae variables.
In stars with surface convection zones, turbulent fluids motions near the surface simultaneously excite and damp oscillations across a broad range of frequency. [2] [3] Because the modes are intrinsically stable, they have low amplitudes and are relatively short-lived. This is the driving mechanism in all solar-like oscillators.
If the base of a surface convection zone is sharp and the convective timescales slower than the pulsation timescales, the convective flows react too slowly to perturbations that can build up into large, coherent pulsations. This mechanism is known as convective blocking [4] and is believed to drive pulsations in the Doradus variables. [5]
Observations from the Kepler satellite revealed eccentric binary systems in which oscillations are excited during the closest approach. [6] These systems are known as heartbeat stars because of the characteristic shape of the lightcurves.
Because solar oscillations are driven by near-surface convection, any stellar oscillations caused similarly are known as solar-like oscillations and the stars themselves as solar-like oscillators. However, solar-like oscillations also occur in evolved stars (subgiants and red giants), which have convective envelopes, even though the stars are not Sun-like.
Cepheid variables are one of the most important classes of pulsating star. They are core-helium burning stars with masses above about 5 solar masses. They principally oscillate at their fundamental modes, with typical periods ranging from days to months. Their pulsation periods are closely related to their luminosities, so it is possible to determine the distance to a Cepheid by measuring its oscillation period, computing its luminosity, and comparing this to its observed brightness.
Cepheid pulsations are excited by the kappa mechanism acting on the second ionization zone of helium.
RR Lyraes are similar to Cepheid variables but of lower metallicity (i.e. Population II) and much lower masses (about 0.6 to 0.8 time solar). They are core helium-burning giants that oscillate in one or both of their fundamental mode or first overtone. The oscillation are also driven by the kappa mechanism acting through the second ionization of helium. Many RR Lyraes, including RR Lyrae itself, show long period amplitude modulations, known as the Blazhko effect.
Delta Scuti variables are found roughly where the classical instability strip intersects the main sequence. They are typically A- to early F-type dwarfs and subgiants and the oscillation modes are low-order radial and non-radial pressure modes, with periods ranging from 0.25 to 8 hours and magnitude variations anywhere between.[ clarification needed ] Like Cepheid variables, the oscillations are driven by the kappa mechanism acting on the second ionization of helium.
SX Phoenicis variables are regarded as metal-poor relatives of Delta Scuti variables.
Gamma Doradus variables occur in similar stars to the red end of the Delta Scuti variables, usually of early F-type. The stars show multiple oscillation frequencies between about 0.5 and 3 days, which is much slower than the low-order pressure modes. Gamma Doradus oscillations are generally thought to be high-order gravity modes, excited by convective blocking.
Following results from Kepler, it appears that many Delta Scuti stars also show Gamma Doradus oscillations and are therefore hybrids. [7] [8]
Rapidly oscillating Ap stars have similar parameters to Delta Scuti variables, mostly being A- and F-type, but they are also strongly magnetic and chemically peculiar (hence the p spectral subtype). Their dense mode spectra are understood in terms of the oblique pulsator model: the mode's frequencies are modulated by the magnetic field, which is not necessarily aligned with the star's rotation (as is the case in the Earth). The oscillation modes have frequencies around 1500 μHz and amplitudes of a few mmag.
Slowly pulsating B (SPB) stars are B-type stars with oscillation periods of a few days, understood to be high-order gravity modes excited by the kappa mechanism. Beta Cephei variables are slightly hotter (and thus more massive), also have modes excited by the kappa mechanism and additionally oscillate in low-order gravity modes with periods of several hours. Both classes of oscillators contain only slowly rotating stars.
Subdwarf B (sdB) stars are in essence the cores of core-helium burning giants who have somehow lost most of their hydrogen envelopes, to the extent that there is no hydrogen-burning shell. They have multiple oscillation periods that range between about 1 and 10 minutes and amplitudes anywhere between 0.001 and 0.3 mag in visible light. The oscillations are low-order pressure modes, excited by the kappa mechanism acting on the iron opacity bump.
White dwarfs are characterized by spectral type, much like ordinary stars, except that the relationship between spectral type and effective temperature does not correspond in the same way. Thus, white dwarfs are known by types DO, DA and DB. Cooler types are physically possible but the Universe is too young for them to have cooled enough. White dwarfs of all three types are found to pulsate. The pulsators are known as GW Virginis stars (DO variables, sometimes also known as PG 1159 stars), V777 Herculis stars (DB variables) and ZZ Ceti stars (DA variables). All pulsate in low-degree, high-order g-modes. The oscillation periods broadly decrease with effective temperature, ranging from about 30 min down to about 1 minute. GW Virginis and ZZ Ceti stars are thought to be excited by the kappa mechanism; V777 Herculis stars by convective blocking.
A number of past, present and future spacecraft have asteroseismology studies as a significant part of their missions (order chronological).
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.
A variable star is a star whose brightness as seen from Earth changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:
A Cepheid variable is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period and amplitude.
CoRoT was a space telescope mission which operated from 2006 to 2013. The mission's two objectives were to search for extrasolar planets with short orbital periods, particularly those of large terrestrial size, and to perform asteroseismology by measuring solar-like oscillations in stars. The mission was led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA) and other international partners.
Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes directly, and local helioseismology, which studies the propagation of the component waves near the Sun's surface.
Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.
Delta Scuti, Latinized from δ Scuti, is a variable star in the southern constellation Scutum. With an apparent visual magnitude that fluctuates around 4.72, it is the fifth-brightest star in this small and otherwise undistinguished constellation. Analysis of the parallax measurements place this star at a distance of about 199 light-years from Earth. It is drifting closer with a radial velocity of −45 km/s.
Beta Cephei variables, also known as Beta Canis Majoris stars, are variable stars that exhibit small rapid variations in their brightness due to pulsations of the stars' surfaces, thought due to the unusual properties of iron at temperatures of 200,000 K in their interiors. These stars are usually hot blue-white stars of spectral class B and should not be confused with Cepheid variables, which are named after Delta Cephei and are luminous supergiant stars.
Gamma Doradus variables are variable stars which display variations in luminosity due to non-radial pulsations of their surface. The stars are typically young, early F or late A type main sequence stars, and typical brightness fluctuations are 0.1 magnitudes with periods on the order of one day. This class of variable stars is relatively new, having been first characterized in the second half of the 1990s, and details on the underlying physical cause of the variations remains under investigation.
The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillating Ap stars (roAps) near the main sequence; RR Lyrae variables where it intersects the horizontal branch; and the Cepheid variables where it crosses the supergiants.
Solar-like oscillations are oscillations in stars that are excited in the same way as those in the Sun, namely by turbulent convection in its outer layers. Stars that show solar-like oscillations are called solar-like oscillators. The oscillations are standing pressure and mixed pressure-gravity modes that are excited over a range in frequency, with the amplitudes roughly following a bell-shaped distribution. Unlike opacity-driven oscillators, all the modes in the frequency range are excited, making the oscillations relatively easy to identify. The surface convection also damps the modes, and each is well-approximated in frequency space by a Lorentzian curve, the width of which corresponds to the lifetime of the mode: the faster it decays, the broader is the Lorentzian. All stars with surface convection zones are expected to show solar-like oscillations, including cool main-sequence stars, subgiants and red giants. Because of the small amplitudes of the oscillations, their study has advanced tremendously thanks to space-based missions.
A pulsating white dwarf is a white dwarf star whose luminosity varies due to non-radial gravity wave pulsations within itself. Known types of pulsating white dwarfs include DAV, or ZZ Ceti, stars, with hydrogen-dominated atmospheres and the spectral type DA; DBV, or V777 Her, stars, with helium-dominated atmospheres and the spectral type DB; and GW Vir stars, with atmospheres dominated by helium, carbon, and oxygen, and the spectral type PG 1159. GW Vir stars may be subdivided into DOV and PNNV stars; they are not, strictly speaking, white dwarfs but pre-white dwarfs which have not yet reached the white dwarf region on the Hertzsprung-Russell diagram. A subtype of DQV stars, with carbon-dominated atmospheres, has also been proposed, and in May 2012, the first extremely low mass variable (ELMV) white dwarf was reported.
Rapidly oscillating Ap stars (roAp stars) are a subtype of the Ap star class that exhibit short-timescale rapid photometric or radial velocity variations. The known periods range between 5 and 23 minutes. They lie in the δ Scuti instability strip on the main sequence.
Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.
The kappa opacity mechanism is the driving mechanism behind the changes in luminosity of many types of pulsating variable stars. The term Eddington valve has been used for this mechanism, but this is increasingly obsolete.
SX Phoenicis is a variable star in the southern constellation Phoenix. With an apparent visual magnitude ranging around 7.33, it is too faint to be readily seen with the naked eye and requires binoculars. It is located 272 light years from the Sun, as determined from an annual parallax shift of 12 mas.
V529 Andromedae, also known as HD 8801, is a variable star in the constellation of Andromeda. It has a 13th magnitude visual companion star 15" away, which is just a distant star on the same line of sight.
FG Virginis is a well-studied variable star in the equatorial constellation of Virgo. It is a dim star, near the lower limit of visibility to the naked eye, with an apparent visual magnitude that ranges from 6.53 down to 6.58. The star is located at a distance of 273.5 light years from the Sun based on parallax measurements, and is drifting further away with a radial velocity of +16 km/s. Because of its position near the ecliptic, it is subject to lunar occultations.
The Whole Earth Telescope is an international network of astronomers that collaborate to study variable stars. The distribution of the observatories in longitude allow the selected targets to be continuously monitored despite the rotation of the Earth.
HD 49434 is a single star in the equatorial constellation of Monoceros. It is faintly visible to the naked eye with an apparent visual magnitude of 5.75. Based on parallax measurements the star is located at a distance of 130.5 light years from the Sun, but it is drifting closer with a radial velocity of −17 km/s.
The Variable Star package (in R language) provides the main functions to analyzed patterns on the oscillation modes of variable stars. An UI for experimentation with synthetic data is also provided.