Kraft break

Last updated

In astronomy, the Kraft break refers to the abrupt decrease in stars' average rotation rates at surface temperatures of about 6200 kelvin. The so-called break bears the name of astronomer Robert Kraft, [1] though its existence was recognized prior to his publications on the topic. [2] The break is understood to separate stars with deep convective envelopes and efficient magnetic dynamos from those without. The dynamos are thought to maintain magnetic fields that transfer angular momentum to the stellar wind, thus slowing down the star's surface through magnetic braking. In hot stars the process is less efficient (because the convective envelopes are shallow) so the stars continue to rotate quickly. [3]

Related Research Articles

<span class="mw-page-title-main">Main sequence</span> Continuous band of stars that appears on plots of stellar color versus brightness

In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hertzsprung and Henry Norris Russell. Stars on this band are known as main-sequence stars or dwarf stars. These are the most numerous true stars in the universe and include the Sun.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is an astronomical object comprising a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye, all within the Milky Way galaxy.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">X-ray astronomy</span> Branch of astronomy that uses X-ray observation

X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy uses a type of space telescope that can see x-ray radiation which standard optical telescopes, such as the Mauna Kea Observatories, cannot.

Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in general much larger than those on the Sun: up to about 30% of the stellar surface may be covered, corresponding to starspots 100 times larger than those on the Sun.

Differential rotation is seen when different parts of a rotating object move with different angular velocities at different latitudes and/or depths of the body and/or in time. This indicates that the object is not solid. In fluid objects, such as accretion disks, this leads to shearing. Galaxies and protostars usually show differential rotation; examples in the Solar System include the Sun, Jupiter and Saturn.

<span class="mw-page-title-main">Asteroseismology</span> Study of oscillations in stars

Asteroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the speed of sound, which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature.

Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes directly, and local helioseismology, which studies the propagation of the component waves near the Sun's surface.

<span class="mw-page-title-main">Convection zone</span> Region of a star which is unstable due to convection

A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation and conduction.

<span class="mw-page-title-main">A-type main-sequence star</span> Stellar classification

An A-type main-sequence star or A dwarf star is a main-sequence star of spectral type A and luminosity class V (five). These stars have spectra defined by strong hydrogen Balmer absorption lines. They measure between 1.4 and 2.1 solar masses (M) and have surface temperatures between 7,600 and 10,000 K. Bright and nearby examples are Altair (A7), Sirius A (A1), and Vega (A0). A-type stars do not have convective zones and thus are not expected to harbor magnetic dynamos. As a consequence, because they do not have strong stellar winds, they lack a means to generate X-ray emissions.

<span class="mw-page-title-main">Robert Kraft (astronomer)</span> American astronomer

Robert Paul Kraft was an American astronomer. He performed pioneering work on Cepheid variables, stellar rotation, novae, and the chemical evolution of the Milky Way. His name is also associated with the Kraft break: the abrupt change in the average rotation rate of main sequence stars around spectral type F8.

<span class="mw-page-title-main">Tachocline</span> Region of the Sun between the radiative interior and the convective zone

The tachocline is the transition region of stars of more than 0.3 solar masses, between the radiative interior and the differentially rotating outer convective zone. This causes the region to have a very large shear as the rotation rate changes very rapidly. The convective exterior rotates as a normal fluid with differential rotation with the poles rotating slowly and the equator rotating quickly. The radiative interior exhibits solid-body rotation, possibly due to a fossil field. The rotation rate through the interior is roughly equal to the rotation rate at mid-latitudes, i.e. in-between the rate at the slow poles and the fast equator. Recent results from helioseismology indicate that the tachocline is located at a radius of at most 0.70 times the solar radius, with a thickness of 0.04 times the solar radius. This would mean the area has a very large shear profile that is one way that large scale magnetic fields can be formed.

In astrophysics, the von Zeipel theorem states that the radiative flux in a uniformly rotating star is proportional to the local effective gravity . The theorem is named after Swedish astronomer Edvard Hugo von Zeipel.

<span class="mw-page-title-main">Stellar magnetic field</span> Magnetic field generated by the convective motion of conductive plasma inside a star

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

Gyrochronology is a method for estimating the age of a low-mass (cool) main sequence star from its rotation period. The term is derived from the Greek words gyros, chronos and logos, roughly translated as rotation, age, and study respectively. It was coined in 2003 by Sydney Barnes to describe the associated procedure for deriving stellar ages, and developed extensively in empirical form in 2007.

Ap and Bp stars are chemically peculiar stars of spectral types A and B which show overabundances of some metals, such as strontium, chromium and europium. In addition, larger overabundances are often seen in praseodymium and neodymium. These stars have a much slower rotation than normal for A and B-type stars, although some exhibit rotation velocities up to about 100 kilometers per second.

<span class="mw-page-title-main">Gliese 752</span> Binary star system in the constellation Aquila

Gliese 752 is a binary star system in the Aquila constellation. This system is relatively nearby, at a distance of about 19 light years.

<span class="mw-page-title-main">Magnetic braking (astronomy)</span> Theory to explain slowing of a suns spin

Magnetic braking is a theory explaining the loss of stellar angular momentum due to material getting captured by the stellar magnetic field and thrown out at great distance from the surface of the star. It plays an important role in the evolution of binary star systems.

14 Ceti is a single star in the equatorial constellation of Cetus. It is faintly visible to the naked eye under good viewing conditions, having an apparent visual magnitude of 5.84. The distance to 14 Ceti can be estimated from its annual parallax shift of 17.4″, which puts it 187 light years away. It is moving further from the Earth with a heliocentric radial velocity of +11 km/s, having recently come no closer than 178 ly.

References

  1. Kraft, R. P. (1967), "Studies of Stellar Rotation. V. The Dependence of Rotation on Age among Solar-Type Stars", Astrophysical Journal, 150: 551, Bibcode:1967ApJ...150..551K, doi: 10.1086/149359
  2. Schatzman, E. (1962), "A theory of the role of magnetic activity during star formation", Annales d'Astrophysique, 25: 18, Bibcode:1962AnAp...25...18S
  3. Maeder, A. (2009), Physics, Formation and Evolution of Rotating Stars (PDF), Astronomy and Astrophysics Library, Bibcode:2009pfer.book.....M, doi:10.1007/978-3-540-76949-1, ISBN   978-3-540-76948-4