Ram pressure is a pressure exerted on a body moving through a fluid medium, caused by relative bulk motion of the fluid rather than random thermal motion. [1] It causes a drag force to be exerted on the body. Ram pressure is given in tensor form as
where is the density of the fluid; is the momentum flux per second in the direction through a surface with normal in the direction. are the components of the fluid velocity in these directions. The total Cauchy stress tensor is the sum of this ram pressure and the isotropic thermal pressure (in the absence of viscosity).
In the simple case when the relative velocity is normal to the surface, and momentum is fully transferred to the object, the ram pressure becomes
The Eulerian form of the Cauchy momentum equation for a fluid is [1]
for isotropic pressure , where is fluid velocity, the fluid density, and the gravitational acceleration. The Eulerian rate of change of momentum in direction at a point is thus (using Einstein notation):
Substituting the conservation of mass, expressed as
this is equivalent to
using the product rule and the Kronecker delta . The first term in the brackets is the isotropic thermal pressure, and the second is the ram pressure.
In this context, ram pressure is momentum transfer by advection (flow of matter carrying momentum across a surface into a body). The mass per unit second flowing into a volume bounded by a surface is
and the momentum per second it carries into the body is
equal to the ram pressure term. This discussion can be extended to 'drag' forces; if all matter incident upon a surface transfers all its momentum to the volume, this is equivalent (in terms of momentum transfer) to the matter entering the volume (the context above). On the other hand, if only velocity perpendicular to the surface is transferred, there are no shear forces, and the effective pressure on that surface increases by
where is the velocity component perpendicular to the surface.
What is the sea level ram air pressure at 100 mph?
Altitude (ft) | Air density (slugs/ft3) | Altitude (m) | Air density (kg/m3) |
---|---|---|---|
sea level | 0.0023769 | 0 | 1.2250 |
5000 | 0.0020482 | 1524 | 1.0556 |
10000 | 0.0017555 | 3048 | 0.9047 |
20000 | 0.0012673 | 6096 | 0.6531 |
50000 | 0.0003817 | 15240 | 0.1967 |
100000 | 0.0000331 | 30480 | 0.0171 |
Within astronomy and astrophysics, James E. Gunn and J. Richard Gott first suggested that galaxies in a galaxy cluster moving through a hot intracluster medium would experience a pressure of
where is the ram pressure, the intracluster gas density, and the speed of the galaxy relative to the medium. [5] This pressure can strip gas out of the galaxy where, essentially, the gas is gravitationally bound to the galaxy less strongly than the force from the intracluster medium 'wind' due to the ram pressure. [6] [5] Evidence of this ram pressure stripping can be seen in the image of NGC 4402. [7] These ram pressure stripped galaxies will often have a large trailing tail and because of this they are commonly called "Jellyfish galaxies." [8]
Ram pressure stripping is thought to have profound effects on the evolution of galaxies. As galaxies fall toward the center of a cluster, more and more of their gas is stripped out, including the cool, denser gas that is the source of continued star formation. Spiral galaxies that have fallen at least to the core of both the Virgo and Coma clusters have had their gas (neutral hydrogen) depleted in this way [9] and simulations suggest that this process can happen relatively quickly, with 100% depletion occurring in 100 million years [10] to a more gradual few billion years. [11]
Recent radio observation of carbon monoxide (CO) emission from three galaxies (NGC 4330, NGC 4402, and NGC 4522) in the Virgo cluster point to the molecular gas not being stripped but instead being compressed by the ram pressure. Increased Hα emission, a sign of star formation, corresponds to the compressed CO region, suggesting that star formation may be accelerated, at least temporarily, while ram pressure stripping of neutral hydrogen is ongoing. [12]
More recently, it has been shown that ram pressure can also lead to the removal of gas in isolated dwarf galaxies that plunge through the cosmic web (the so-called cosmic web stripping process). [13] Although the typical overdensity within the cosmic web is significantly lower than that found in the environment of galaxy clusters, the high relative speed between a dwarf and the cosmic web renders ram pressure efficient. This is an attractive mechanism to explain not only the presence of isolated dwarf galaxies away from galaxy clusters with particularly low hydrogen abundance to stellar mass ratio, [14] [15] but also the compression of gas in the centre of a dwarf galaxy and the subsequent reignition of star formation. [16]
Meteoroids enter Earth's atmosphere from outer space traveling at hypersonic speeds of at least 11 km/s (7 mi/s) and often much faster. Despite moving through the rarified upper reaches of Earth's atmosphere the immense speed at which a meteor travels nevertheless rapidly compresses the air in its path, creating a shock wave. The meteoroid then experiences what is known as ram pressure. As the air in front of the meteoroid is compressed its temperature quickly rises. This is not due to friction, rather it is simply a consequence of many molecules and atoms being made to occupy a smaller space than formerly. Ram pressure and the very high temperatures it causes are the reasons few meteors make it all the way to the ground and most simply burn up or are ablated into tiny fragments. Larger or more solid meteorites may explode instead in a meteor airburst. [17] [18]
The use of the term explosion is somewhat loose in this context, and can be confusing. This confusion is exacerbated by the tendency for airburst energies to be expressed in terms of nuclear weapon yields, as when the Tunguska airburst is given a rating in megatons of TNT. Large meteoroids do not explode in the sense of chemical or nuclear explosives. Rather, at a critical moment in its atmospheric entry the enormous ram pressure experienced by the leading face of the meteoroid converts the body's immense momentum into a force blowing it apart over a nearly instantaneous span of time. [18]
In essence, the meteoroid is ripped apart by its own speed. This occurs when fine tendrils of superheated air force their way into cracks and faults in the leading face's surface. Once this high pressure plasma gains entry to the meteoroid's interior it exerts tremendous force on the body's internal structure. This occurs because the superheated air now exerts its force over a much larger surface area, as when the wind suddenly fills a sail. This sudden rise in the force exerted on the meteoroid overwhelms the body's structural integrity and it begins to break up. The breakup of the meteoroid yields an even larger total surface area for the superheated air to act upon and a cycle of amplification rapidly occurs. This is the explosion, and it causes the meteoroid to disintegrate with hypersonic velocity, a speed comparable to that of explosive detonation. [18]
Harry Julian Allen and Alfred J. Eggers of NACA used an insight about ram pressure to propose the blunt-body concept: a large, blunt body entering the atmosphere creates a boundary layer of compressed air which serves as a buffer between the body surface and the compression-heated air. In other words, kinetic energy is converted into heated air via ram pressure, and that heated air is quickly moved away from object surface with minimal physical interaction, and hence minimal heating of the body. This was counter-intuitive at the time, when sharp, streamlined profiles were assumed to be better. [19] [20] This blunt-body concept was used in Apollo-era capsules.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.
In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:
In fluid dynamics, the baroclinity of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In meteorology a baroclinic flow is one in which the density depends on both temperature and pressure. A simpler case, barotropic flow, allows for density dependence only on pressure, so that the curl of the pressure-gradient force vanishes.
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".
Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.
The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.
Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to nondissipative fluids.
In physical cosmology, cosmological perturbation theory is the theory by which the evolution of structure is understood in the Big Bang model. Cosmological perturbation theory may be broken into two categories: Newtonian or general relativistic. Each case uses its governing equations to compute gravitational and pressure forces which cause small perturbations to grow and eventually seed the formation of stars, quasars, galaxies and clusters. Both cases apply only to situations where the universe is predominantly homogeneous, such as during cosmic inflation and large parts of the Big Bang. The universe is believed to still be homogeneous enough that the theory is a good approximation on the largest scales, but on smaller scales more involved techniques, such as N-body simulations, must be used. When deciding whether to use general relativity for perturbation theory, note that Newtonian physics is only applicable in some cases such as for scales smaller than the Hubble horizon, where spacetime is sufficiently flat, and for which speeds are non-relativistic.
The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.
A subfield of fluid statics, aerostatics is the study of gases that are not in motion with respect to the coordinate system in which they are considered. The corresponding study of gases in motion is called aerodynamics.
Inertial waves, also known as inertial oscillations, are a type of mechanical wave possible in rotating fluids. Unlike surface gravity waves commonly seen at the beach or in the bathtub, inertial waves flow through the interior of the fluid, not at the surface. Like any other kind of wave, an inertial wave is caused by a restoring force and characterized by its wavelength and frequency. Because the restoring force for inertial waves is the Coriolis force, their wavelengths and frequencies are related in a peculiar way. Inertial waves are transverse. Most commonly they are observed in atmospheres, oceans, lakes, and laboratory experiments. Rossby waves, geostrophic currents, and geostrophic winds are examples of inertial waves. Inertial waves are also likely to exist in the molten core of the rotating Earth.
The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.
The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.
In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
A bubble column reactor is a chemical reactor that belongs to the general class of multiphase reactors, which consists of three main categories: trickle bed reactor, fluidized bed reactor, and bubble column reactor. A bubble column reactor is a very simple device consisting of a vertical vessel filled with water with a gas distributor at the inlet. Due to the ease of design and operation, which does not involve moving parts, they are widely used in the chemical, biochemical, petrochemical, and pharmaceutical industries to generate and control gas-liquid chemical reactions.
In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.