The Milky Way Project is a Zooniverse project whose main goal is to identify stellar-wind bubbles in the Milky Way Galaxy. Users classify sets of infrared images from the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). [1] Scientists believe bubbles in these images are the result of young, massive stars whose light causes shocks in interstellar gas.
The Milky Way Project works with data taken from the Multiband Imaging Photometer for Spitzer Galactic Plane Survey (MIPSGAL) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Only a small part uses WISE data. The project looks for bubbles, which can mean the formation of stars. The project also looks for knots, star clusters, and other objects such as young stars, supernova remnants, and newly discovered galaxies. [2] [3]
The Milky Way Project started as the ninth Zooniverse project in December 2010. [4] [5] The phase 1 worked with the colors: 4.5 μm for blue, 8.0 μm for green and 24 μm for red. This resulted in the Data Release 1 (DR1) of the Milky Way Project in 2012 with 5,106 bubbles, which can also be found in SIMBAD. [6]
The annulus tool that was used to mark the bubbles in the Milky Way Project phase 1 was at random round and needed improvement. This problem was solved after the introduction of the ellipse tool. This new tool was used in the phase 2 of the project, short after DR1. This changed the classification and the tool does fit the actual shape of the bubbles. The phase 2 also used different colors: 3.6 μm for blue, 4.5 μm for green and 8.0 μm for red, the same three colors as GLIMPSE 360 in Aladin Lite. [7] Phase 3 is also called Phoenix since it started after a year offline [8] and it is now active. Phase 3 uses the same colors as phase 1 and the same ellipse tool as phase 2, combining the strength of phase 1+2.
The Milky Way Project did also search for star clusters and galaxies. Phase 2 additionally did search for Extended Green Objects (EGO), 4.5 μm emissions that seem to be connected to outflow from massive young stellar objects. [9] The volunteers did mention objects that are compact and yellow in the Milky Way Project. They are now called yellow balls, a mix of compact star-forming regions that show transition into bubbles. [10] In the phase 3 the volunteers can additionally search for yellowballs, pillars and bowshocks. Phase 3 aims to create a reliable bubble catalog (DR2) with the data from phase 2+3 (4.4 million classifications), an improved yellowball catalog and the largest bowshock catalog to date. For this goal the 24 μm part of the image is important: Bubbles are more easy to spot and bowshocks are most of the time visible at this wavelength.
The MWP classification aggregation pipeline is continuously tested and modified to avoid issues that were encountered in DR1.
The second Data Release was published in 2019, which contains 2,600 infrared (IR) bubbles and 599 candidate IR bow shock candidates. With a subset of highly reliable subset of 1394 IR bubbles and 453 bow shocks. The lower number of bubbles is being explained with a better quality of the catalog. The new catalog includes bow shocks near the star-forming regions NGC 3603 and RCW 49. The size of the bubbles in the catalog is proven to be as good as expert classifications and to be better than in previous works. The mysterious "coffee ring" is presented as well, but although this perfect ring in absorption was observed with the Green Bank Telescope, the nature of this object remains a mystery. [11]
Zooniverse projects:
A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek galaxias (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a thousand stars, to the largest galaxies known – supergiants with one hundred trillion stars, each orbiting its galaxy's center of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few percent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.
The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003, that was deactivated when operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, following IRAS (1983) and ISO (1995–1998). It was the first spacecraft to use an Earth-trailing orbit, later used by the Kepler planet-finder.
The Galactic Center is the barycenter of the Milky Way and a corresponding point on the rotational axis of the galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact radio source which is almost exactly at the galactic rotational center. The Galactic Center is approximately 8 kiloparsecs (26,000 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius, where the Milky Way appears brightest, visually close to the Butterfly Cluster (M6) or the star Shaula, south to the Pipe Nebula.
The Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph), also known as the Sagittarius Dwarf Elliptical Galaxy, is an elliptical loop-shaped satellite galaxy of the Milky Way. It contains four globular clusters in its main body, with the brightest of them—NGC 6715 (M54)—being known well before the discovery of the galaxy itself in 1994. Sgr dSph is roughly 10,000 light-years in diameter, and is currently about 70,000 light-years from Earth, travelling in a polar orbit at a distance of about 50,000 light-years from the core of the Milky Way. In its looping, spiraling path, it has passed through the plane of the Milky Way several times in the past. In 2018 the Gaia project of the European Space Agency showed that Sgr dSph had caused perturbations in a set of stars near the Milky Way's core, causing unexpected rippling movements of the stars triggered when it moved through the Milky Way between 300 and 900 million years ago.
The Zone of Avoidance, or Zone of Galactic Obscuration (ZGO), is the area of the sky that is obscured by the Milky Way.
Gaia is a space observatory of the European Space Agency (ESA), launched in 2013 and expected to operate until 2025. The spacecraft is designed for astrometry: measuring the positions, distances and motions of stars with unprecedented precision, and the positions of exoplanets by measuring attributes about the stars they orbit such as their apparent magnitude and color. The mission aims to construct by far the largest and most precise 3D space catalog ever made, totalling approximately 1 billion astronomical objects, mainly stars, but also planets, comets, asteroids and quasars, among others.
The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 and was named after the Alfred P. Sloan Foundation, which contributed significant funding.
Sagittarius A*, abbreviated as Sgr A*, is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, visually close to the Butterfly Cluster (M6) and Lambda Scorpii.
The Sombrero Galaxy is a peculiar galaxy of unclear classification in the constellation borders of Virgo and Corvus, being about 9.55 megaparsecs from the Milky Way galaxy. It is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster. It has an isophotal diameter of approximately 29.09 to 32.32 kiloparsecs, making it slightly bigger in size than the Milky Way.
The Orion Arm, also known as the Orion–Cygnus Arm, is a minor spiral arm within the Milky Way Galaxy spanning 3,500 light-years in width and extending roughly 20,000 light-years in length. This galactic structure encompasses the Solar System, including Earth. It is sometimes referred to by alternate names such as the Local Arm or Orion Bridge, and it was previously identified as the Local Spur or the Orion Spur. It should not be confused with the outer terminus of the Norma Arm, known as the Cygnus Arm.
The Perseus Arm is one of two major spiral arms of the Milky Way galaxy. The second major arm is called the Scutum–Centaurus Arm. The Perseus Arm begins from the distal end of the long Milky Way central bar. Previously thought to be 13,000 light-years away, it is now thought to lie 6,400 light years from the Solar System.
In astrophysics, bow shocks are shock waves in regions where the conditions of density and pressure change dramatically due to blowing stellar wind. Bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium.
In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars lying near the plane of the Milky Way which are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies is roughly 1.8 magnitudes per kiloparsec.
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye.
Wide-field Infrared Survey Explorer was a NASA infrared astronomy space telescope in the Explorers Program launched in December 2009. WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid. WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a 40 cm (16 in) diameter infrared telescope in Earth orbit.
WR 102ka, also known as the Peony star, is a slash star that is one of several candidates for the most luminous-known star in the Milky Way.
RCW 49, also known as NGC 3247, is a H II region nebula located 13,700 light years away. Other designations for the RCW 49 region include NGC 3247 and G29 and it is commonly known as the Whirling Dervish Nebula. It is a dusty stellar nursery that contains more than 2,200 stars and is about 300-400 light years across. RCW 49 is recognized as among the brightest and most massive HII regions.
ASW0009io9 (9io9) is a gravitationally lensed system of two galaxies. The nearer galaxy is approximately 2 billion light-years (610 Mpc) from Earth and is designated SDSS J020941.27+001558.4, while the lensed galaxy is 10 billion light-years (3.1 Gpc) distant and is designated ASW0009io9. It was discovered in January 2014 by a group of citizen scientists, while classifying images on the website Spacewarps.org. The discovery was announced on the BBC television programme Stargazing Live.
Disk Detective is the first NASA-led and funded-collaboration project with Zooniverse. It is NASA's largest crowdsourcing citizen science project aiming at engaging the general public in search of stars, which are surrounded by dust-rich circumstellar disks, where planets usually dwell and are formed. Initially launched by NASA Citizen Science Officer, Marc Kuchner, the principal investigation of the project was turned over to Steven Silverberg.
A hot, dust-obscured galaxy, or hot DOG, is a rare type of quasar. The central black hole of such a galaxy emits vast amounts of radiation which heats the infalling dust and gas, releasing infrared light at a rate about 1,000 times as much as the Milky Way, making these some of the most luminous galaxies in the universe. However, the density of the surrounding dust is so great that most of that light is obscured. Their average temperatures range from 60 to 120 K, significantly higher than an average galaxy's temperature of 30 to 40 K. They also appear to concentrate a much higher proportion of their galactic mass in the central black hole than is observed in normal galaxies.
{{cite web}}
: CS1 maint: numeric names: authors list (link)