Interstellar Boundary Explorer

Last updated

Interstellar Boundary Explorer
IBEX spacecraft.jpg
IBEX satellite
NamesExplorer 91
IBEX
SMEX-10
Mission typeAstronomy
Operator NASA
COSPAR ID 2008-051A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 33401
Website ibex.swri.edu
Mission duration2 years (planned)
14 years, 9 months, 18 days (in progress)
Spacecraft properties
SpacecraftExplorer XCI
Spacecraft typeInterstellar Boundary Explorer
Bus MicroStar-1
Manufacturer Orbital Sciences Corporation
Launch mass107 kg (236 lb) [1]
Dry mass80 kg (180 lb)
Payload mass26 kg (57 lb)
Dimensions58 × 95 cm (23 × 37 in)
Power116 watts
Start of mission
Launch date19 October 2008, 17:47:23 UTC
Rocket Pegasus XL (F40)
Launch site Bucholz Airfield, Stargazer
Contractor Orbital Sciences Corporation
Entered serviceJanuary 2009
Orbital parameters
Reference system Geocentric orbit [2]
Regime High Earth orbit
Perigee altitude 7,000 km (4,300 mi)
Apogee altitude 220,886 km (137,252 mi)
Inclination 10.99°
Period 6604.00 minutes
Instruments
IBEX-Lo
IBEX-Hi
IBEX official logo.jpg
IBEX mission logo
Explorer program
  AIM (Explorer 90)
WISE (Explorer 92) 
 

Interstellar Boundary Explorer (IBEX or Explorer 91 or SMEX-10) is a NASA satellite in Earth orbit that uses energetic neutral atoms (ENAs) to image the interaction region between the Solar System and interstellar space. The mission is part of NASA's Small Explorer program and was launched with a Pegasus-XL launch vehicle on 19 October 2008. [3]

Contents

The mission is led by Dr. David J. McComas (IBEX principal investigator), formerly of the Southwest Research Institute (SwRI) and now with Princeton University. The Los Alamos National Laboratory and the Lockheed Martin Advanced Technology Center built the IBEX-Hi and IBEX-Lo sensors respectively. The Orbital Sciences Corporation manufactured the satellite bus and was the location for spacecraft environmental testing. The nominal mission baseline duration was two years after commissioning, and the prime ended in early 2011. The spacecraft and sensors are still healthy and the mission is continuing in its extended mission. [4]

IBEX is in a Sun-oriented spin-stabilized orbit around the Earth. [5] In June 2011, IBEX was shifted to a new, more efficient, much more stable orbit. [6] It does not come as close to the Moon in the new orbit, and expends less fuel to maintain its position. [6]

The spacecraft is equipped with two large aperture imagers which detect ENAs with energies from 10 eV to 2  keV (IBEX-Lo) and 300 eV to 6 keV (IBEX-Hi). The mission was originally planned for a 24 month operations period. The mission has since been extended, with the spacecraft still in operation as of March 2023.

Spacecraft

IBEX and Star 27. IBEX and Star-27.jpg
IBEX and Star 27.

The spacecraft is built on an octagonal base, roughly 58 cm (23 in) high and 95 cm (37 in) across. The dry mass is 80 kg (180 lb) of which the instrument payload comprises 26 kg (57 lb). The fully fueled mass is 107 kg (236 lb), and the entire flight system launch mass, including the ATK Star 27 solid rocket motor, is 462 kg (1,019 lb). The spacecraft itself has a hydrazine attitude control system. Power is produced by a solar array with a 116 watts capability, nominal power use is 66 W (16 W for the payload). Communications are via two hemispherical antennas with a nominal downlink data rate of 320 kbps and an uplink rate of 2 kbps. [7]

Science goal

The Interstellar Boundary Explorer (IBEX) mission science goal is to discover the nature of the interactions between the solar wind and the interstellar medium at the edge of the Solar System. [8] IBEX has achieved this goal by generating full sky maps of the intensity (integrated over the line-of-sight) of ENAs in a range of energies every six months. Most of these ENAs are generated in the heliosheath, which is the region of interaction.

Mission

IBEX in a fairing Image-Pegasus XL IBEX in clean room 02.jpg
IBEX in a fairing

Launch

The IBEX satellite was mated to its Pegasus XL launch vehicle at Vandenberg Air Force Base, California, and the combined vehicle was then suspended below the Lockheed L-1011 Stargazer mother airplane and flown to Kwajalein Atoll in the central Pacific Ocean. [9] Stargazer arrived at Kwajalein Atoll on 12 October 2008. [8]

The IBEX satellite was carried into space on 19 October 2008, by the Pegasus XL launch vehicle. The launch vehicle was released from Stargazer, which took off from Kwajalein Atoll, at 17:47:23 UTC. [3] By launching from this site close to the equator, the Pegasus launch vehicle lifted as much as 16 kg (35 lb) more mass to orbit than it would have with a launch from the Kennedy Space Center in Florida. [10]

Mission profile

The IBEX satellite initially launched into a highly-elliptical transfer orbit with a low perigee and used a solid fuel rocket motor as its final boost stage at apogee in order to raise its perigee greatly and to achieve its desired high-altitude elliptical orbit.

IBEX is in a highly-eccentric elliptical terrestrial orbit, which ranges from a perigee of about 86,000 km (53,000 mi) to an apogee of about 260,000 km (160,000 mi). Its original orbit was about 7,000 × 320,000 km (4,300 × 198,800 mi) [5] — that is, about 80% of the distance to the Moon — which has changed primarily due to an intentional adjustment to prolong the spacecraft's useful life.

This very high orbit allows the IBEX satellite to move out of the Earth's magnetosphere when making scientific observations. This extreme altitude is critical due to the amount of charged-particle interference that would occur while taking measurements within the magnetosphere. When within the magnetosphere of the Earth (70,000 km (43,000 mi)), the satellite also performs other functions, including telemetry downlinks. [11]

Orbit adjusted

In June 2011, IBEX shifted to a new orbit that raised its perigee to more than 30,000 km (19,000 mi). The new orbit has a period of one third of a lunar month, which, with the correct phasing, avoids taking the spacecraft too close to the Moon, whose gravity can negatively affect IBEX's orbit. The now spacecraft uses less fuel to maintain a stable orbit, increasing its useful lifespan to more than 40 years. [6]

Instruments

IBEX Lo sensor IBEX Lo sensor.jpg
IBEX Lo sensor

The heliospheric boundary of the Solar System is being imaged by measuring the location and magnitude of charge-exchange collisions occurring in all directions. The satellite's payload consists of two energetic neutral atom (ENA) imagers, IBEX-Hi and IBEX-Lo. Each consists of a collimator that limits their fields of view (FoV) a conversion surface to convert neutral hydrogen and oxygen into ions, an electrostatic analyzer (ESA) to suppress ultraviolet light and to select ions of a specific energy range, and a detector to count particles and identify the type of each ion. Both of these sensors are a single-pixel camera with a field of view of roughly 7° x 7°. The IBEX-Hi instrument is recording particle counts in a higher energy band (300 eV to 6 keV) than the IBEX-Lo energy band (10 eV to 2 keV). The scientific payload also includes a Combined Electronics Unit (CEU) that controls the voltages on the collimator and the ESA, and it reads and records data from the particle detectors of each sensor. [12]

Communication

Compared to other space observatories, IBEX has a low data transfer rate due to the limited requirements of the mission. [13]

... IBEX data transfer rates are slow compared with other telescopes due to the nature of the data it collects. IBEX does not need a "high speed" connection, since it only has the opportunity to collect up to a few particles per minute. Communication from the satellite to the ground is 20 times slower than a typical home cable modem (320,000 bits per second) [is the satellite's transfer speed], [14] and from the ground to the satellite only 2,000 bits per second, which is 250 times slower! Once the signal is collected by the receivers on Earth, it is carried over the internet to Mission control center in Dulles, Virginia, and to the IBEX Science Operation Center in San Antonio, Texas".

NASA's IBEX Q and A [13]

Data collection

High-energy map of the heliosphere IBEX map of the heliosphere, 0.9-1.5 keV.jpg
High-energy map of the heliosphere
The ribbon of ENA emissions seen in the IBEX map. IBEXmagneticfieldinfluence.jpg
The ribbon of ENA emissions seen in the IBEX map.

IBEX is collecting energetic neutral atom (ENA) emissions that are traveling through the Solar System to Earth that cannot be measured by conventional telescopes. These ENAs are created on the boundary of our Solar System by the interactions between solar wind particles and interstellar medium particles. [15]

On the average IBEX-Hi detects about 500 particles per day, and IBEX-Lo, less than 100. [16] By 2012, over 100 scientific papers related to IBEX were published, described by the principal investigator as "an incredible scientific harvest". [16]

Data availability

As the IBEX data is validated, the IBEX data is made available in a series of data releases on the SwRI IBEX Public Data website. In addition, the data is periodically sent to the NASA Space Physics Data Facility (SPDF), which is the official archive site for IBEX data. SPDF data can be searched at the Heliophysics Data Portal.

Science results

Animation illustrating IBEX's collection of data on neutral atoms at the boundary of the Solar System.
Far beyond the orbit of Neptune, the solar wind and the interstellar medium interact to create a region known as the inner heliosheath, bounded on the inside by the termination shock, and on the outside by the heliopause. Ibexheliosphererevised.jpg
Far beyond the orbit of Neptune, the solar wind and the interstellar medium interact to create a region known as the inner heliosheath, bounded on the inside by the termination shock, and on the outside by the heliopause.

Initial data revealed a previously unpredicted "very narrow ribbon that is two to three times brighter than anything else in the sky". [17] Initial interpretations suggest that "the interstellar environment has far more influence on structuring the heliosphere than anyone previously believed". [15] It is unknown what is creating the energetic neutral atoms (ENA) ribbon. [18] The Sun is currently traveling through the Local Interstellar Cloud, and the heliosphere's size and shape are key factors in determining its shielding power from cosmic rays. Should IBEX detect changes in the shape of the ribbon, that could show how the heliosphere is interacting with the Local Fluff. [19] It has also observed ENAs from the Earth's magnetosphere. [4]

In October 2010, significant changes were detected in the ribbon after six months, based on the second set of IBEX observations. [20]

It went on to detect neutral atoms from outside the Solar System, which were found to differ in composition from the Sun. [21] Surprisingly, IBEX discovered that the heliosphere has no bow shock, and it measured its speed relative to the local interstellar medium (LISM) as 23.2 km/s (14.4 mi/s), improving on the previous measurement of 26.3 km/s (16.3 mi/s) by Ulysses . [22] Those speeds equate to 25% less pressure on the Sun's heliosphere than previously thought. [21] [22]

In July 2013, IBEX results revealed a 4-lobed tail on the Solar System's heliosphere. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, 54Fe and 56Fe, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<i>Ulysses</i> (spacecraft) 1990 robotic space probe; studied the Sun from a near-polar orbit

Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

<span class="mw-page-title-main">IMAGE (spacecraft)</span> NASA satellite of the Explorer program

IMAGE is a NASA Medium Explorer mission that studied the global response of the Earth's magnetosphere to changes in the solar wind. It was believed lost but as of August 2018 might be recoverable. It was launched 25 March 2000, at 20:34:43.929 UTC, by a Delta II launch vehicle from Vandenberg Air Force Base on a two-year mission. Almost six years later, it unexpectedly ceased operations in December 2005 during its extended mission and was declared lost. The spacecraft was part of NASA's Sun-Earth Connections Program, and its data has been used in over 400 research articles published in peer-reviewed journals. It had special cameras that provided various breakthroughs in understanding the dynamics of plasma around the Earth. The principal investigator was Jim Burch of the Southwest Research Institute.

<span class="mw-page-title-main">Heliosphere</span> Region of space dominated by the Sun

The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun. It takes the shape of a vast, bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium. The "bubble" of the heliosphere is continuously "inflated" by plasma originating from the Sun, known as the solar wind. Outside the heliosphere, this solar plasma gives way to the interstellar plasma permeating the Milky Way. As part of the interplanetary magnetic field, the heliosphere shields the Solar System from significant amounts of cosmic ionizing radiation; uncharged gamma rays are, however, not affected. Its name was likely coined by Alexander J. Dessler, who is credited with the first use of the word in the scientific literature in 1967. The scientific study of the heliosphere is heliophysics, which includes space weather and space climate.

<span class="mw-page-title-main">Explorer 52</span> NASA satellite of the Explorer program

Explorer 52, also known as Hawkeye-1, Injun-F, Neutral Point Explorer, IE-D, Ionospheric Explorer-D, was a NASA satellite launched on 3 June 1974, from Vandenberg Air Force Base on a Scout E-1 launch vehicle.

<span class="mw-page-title-main">THEMIS</span> NASA satellite of the Explorer program

Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.

<span class="mw-page-title-main">Explorer 33</span> NASA satellite of the Explorer program

Explorer 33, also known as IMP-D and AIMP-1, was a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.

<span class="mw-page-title-main">Submillimeter Wave Astronomy Satellite</span> NASA satellite of the Explorer program

Submillimeter Wave Astronomy Satellite is a NASA submillimetre astronomy satellite, and is the fourth spacecraft in the Small Explorer program (SMEX). It was launched on 6 December 1998, at 00:57:54 UTC, from Vandenberg Air Force Base aboard a Pegasus XL launch vehicle. The telescope was designed by the Smithsonian Astrophysical Observatory (SAO) and integrated by Ball Aerospace, while the spacecraft was built by NASA's Goddard Space Flight Center (GSFC). The mission's principal investigator is Gary J. Melnick.

<span class="mw-page-title-main">Magnetospheric Multiscale Mission</span> Four NASA robots studying Earths magnetosphere (2015-present)

The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. The spacecraft were launched on 13 March 2015 at 02:44 UTC. The mission is designed to gather information about the microphysics of magnetic reconnection, energetic particle acceleration, and turbulence⁠ — processes that occur in many astrophysical plasmas. As of March 2020, the MMS spacecraft have enough fuel to remain operational until 2040.

<span class="mw-page-title-main">Energetic neutral atom</span> Technology to create global images of otherwise invisible phenomena

Energetic Neutral Atom (ENA) imaging, often described as "seeing with atoms", is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.

<span class="mw-page-title-main">TWINS</span> NASA Experiments of the Explorer program

Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) are a pair of NASA instruments aboard two United States National Reconnaissance Office (NRO) satellites in Molniya orbits. TWINS was designed to provide stereo images of the Earth's ring current. The first instrument, TWINS-1, was launched aboard USA-184 on 28 June 2006. TWINS-2 followed aboard USA-200 on 13 March 2008.

<span class="mw-page-title-main">Heliophysics Science Division</span>

The Heliophysics Science Division of the Goddard Space Flight Center (NASA) conducts research on the Sun, its extended Solar System environment, and interactions of Earth, other planets, small bodies, and interstellar gas with the heliosphere. Division research also encompasses geospace—Earth's uppermost atmosphere, the ionosphere, and the magnetosphere—and the changing environmental conditions throughout the coupled heliosphere.

<span class="mw-page-title-main">Explorer 12</span> NASA satellite of the Explorer program

Explorer 12, also called EPE-A or Energetic Particles Explorer-A and as S3), was a NASA satellite built to measure the solar wind, cosmic rays, and the Earth's magnetic field. It was the first of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 16 August 1961, aboard a Thor-Delta launch vehicle. It ceased transmitting on 6 December 1961 due to power failure.

<span class="mw-page-title-main">Interstellar Mapping and Acceleration Probe</span> Planned NASA heliophysics mission

The Interstellar Mapping and Acceleration Probe(IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in February 2025. IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the Sun–Earth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.

NASA's Solar Terrestrial Probes program (STP) is a series of missions focused on study the Sun-Earth system. It is part of NASA's Heliophysics Science Division within the Science Mission Directorate.

<span class="mw-page-title-main">AMPTE-CCE</span> NASA satellite of the Explorer program

AMPTE-Charge Composition Explorer, also called as AMPTE-CCE or Explorer 65, was a NASA satellite designed and tasked to study the magnetosphere of Earth, being launched as part of the Explorer program. The AMPTE mission was designed to study the access of solar wind ions to the magnetosphere, the convective-diffusive transport and energization of magnetospheric particles, and the interactions of plasmas in space.

<span class="mw-page-title-main">Plasma Wave Subsystem</span> Instrument on board the Voyager space probes

Plasma Wave Subsystem, abbreviated PWS, is an instrument that is on board the Voyager 1 and Voyager 2 unmanned probes of the Voyager program. The device is 16 channel step frequency receiver and a low-frequency waveform receiver that can measure electron density. The PWS uses the two long antenna in a V-shape on the spacecraft, which are also used by another instrument on the spacecraft. The instrument recorded data about the Solar System's gas giants, and about the outer reaches of the Heliosphere, and beyond. In the 2010s, the PWS was used to play the "sounds of interstellar space" as the spacecraft can sample the local interstellar medium after they departed the Sun's heliosphere. The heliosphere is a region essentially under the influence of the Sun's solar wind, rather than the local interstellar environment, and is another way of understanding the Solar System in comparison to the objects gravitationally bound around Earth's Sun.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<i>Interstellar Probe</i> (spacecraft) Proposed NASA space probe to travel 1000 AU from the Sun

Interstellar Probe (ISP) is a proposed NASA space probe designed to explore and characterize the heliosphere and interstellar space. The study was originally proposed in 2018 by NASA for the Applied Physics Laboratory. It would have a baseline launch between 2036 and 2041. The probe would launch on a direct hyperbolic trajectory to encounter Jupiter after six to seven months, after which the probe would travel at a speed of about 6–7 astronomical units (900,000,000–1.05×109 kilometres) per year, leaving the heliosphere after only 16 years.

References

  1. "IBEX". ESA. Retrieved 13 August 2015.
  2. "Trajectory: IBEX (Explorer 91) 2008-051A". NASA. 28 October 2021. Retrieved 9 December 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. 1 2 Ray, Justin (19 October 2008). "Mission Status Center: Pegasus/IBEX". Spaceflight Now. Retrieved 27 November 2009.
  4. 1 2 "Archived Updates". Southwest Research Institute.
  5. 1 2 "Fact Sheet: IBEX" (PDF). Orbital ATK. FS001_06_3695. Archived from the original (PDF) on 16 March 2015. Retrieved 27 April 2015.
  6. 1 2 3 McComas, Dave (14 November 2011). "IBEX Orbit-Raising Maneuver". Southwest Research Institute. Retrieved 1 March 2012.
  7. "Display: IBEX (Explorer 91) 2008-051A". NASA. 28 October 2021. Retrieved 8 December 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. 1 2 "Interstellar Boundary Explorer Mission". NASA. 14 October 2008.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. Diller, George (3 October 2008). "Expendable Launch Vehicle Status Report". NASA. ELV-100308.
  10. McComas, Dave (November 2006). "Janet Ball, Lockheed Martin Space Systems". Southwest Research Institute. Retrieved 19 November 2009.
  11. "IBEX FAQ". NASA. 14 January 2008. Retrieved 14 January 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. "IBEX COSPAR ID 2008-051A". NASA. 28 November 2018. Retrieved 22 January 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. 1 2 "IBEX Q and A". NASA. 25 July 2008. Retrieved 14 May 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  14. http://www.nasa.gov/pdf/280255main_IBEXFactSheetOct08.pdf PD-icon.svg This article incorporates text from this source, which is in the public domain .
  15. 1 2 McComas, Dave (15 October 2009). "First Science Results from IBEX!". Southwest Research Institute. Retrieved 5 September 2010.
  16. 1 2 McComas, Dave (15 October 2012). "3 Years of IBEX Observations". Southwest Research Institute.
  17. Baldwin, Emily (15 October 2009). "IBEX maps edge of Solar System". Astronomy Now. Archived from the original on 21 September 2016. Retrieved 14 August 2016.
  18. Kerr, Richard A. (16 October 2009). "Tying Up the Solar System With a Ribbon of Charged Particles". Science. Science Magazine. 326 (5951): 350–351. doi:10.1126/science.326_350a. PMID   19833930.
  19. "Mysterious band of particles holds clues to Solar System's future". Cosmos Magazine. 25 January 2010. Archived from the original on 13 October 2016. Retrieved 5 September 2010.
  20. "The Ever-Changing Edge of the Solar System". Astrobiology Magazine. 2 October 2010. Archived from the original on 23 August 2014. Retrieved 8 November 2010.{{cite news}}: CS1 maint: unfit URL (link)
  21. 1 2 "IBEX Reveals a Missing Boundary At the Edge Of the Solar System". NASA. 10 May 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  22. 1 2 Kohler, Susanna (14 May 2012). "No Shocks for This Bow: IBEX Says We're Wrong". Astrobites. Retrieved 14 August 2016.
  23. "NASA's IBEX Provides First View Of the Solar System's Tail". NASA. 10 July 2013. Retrieved 13 August 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .