IXPE

Last updated • 6 min readFrom Wikipedia, The Free Encyclopedia

Imaging X-ray Polarimetry Explorer
IXPE-artist-rendition.jpg
IXPE satellite, on the top are its three identical X-ray optics elements, the sensors are on the bottom.
NamesExplorer 97
IXPE
SMEX-14
Mission type X-ray astronomy satellite
Operator NASA, ASI
COSPAR ID 2021-121A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 49954
Website ixpe.msfc.nasa.gov
asi.it/ixpe
Mission duration5 years (planned)
2 years, 6 months and 7 days (in progress)
Spacecraft properties
SpacecraftExplorer XCVII
Spacecraft typeImaging X-ray Polarimetry Explorer
Bus BCP-100
Manufacturer Ball Aerospace & Technologies
OHB Italia
Launch mass330 kg (730 lb) [1]
Payload mass170 kg (370 lb)
Dimensions1.1 m (3 ft 7 in) in diameter and 5.2 m (17 ft) tall, fully extended
Solar array: 2.7 m (8 ft 10 in) fully deployed
Start of mission
Launch date9 December 2021, 06:00  UTC [2]
Rocket Falcon 9, B1061.5
Launch site Kennedy Space Center, LC-39A
Contractor SpaceX
Entered service10 January 2022 [3]
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
Perigee altitude 540 km (340 mi)
Apogee altitude 540 km (340 mi)
Inclination 0.20°
Period 90.00 minutes
Main telescope
TypeThree-mirror
Focal length4 m [4]
Wavelengths X-ray
Transponders
Band S-band [5]
Imaging X-ray Polarimetry Explorer (IXPE) logo.png
IXPE mission logo
Explorers Program
  ICON (Explorer 96)
PUNCH and TRACERS  
 

Imaging X-ray Polarimetry Explorer, commonly known as IXPE or SMEX-14, is a space observatory with three identical telescopes designed to measure the polarization of cosmic X-rays of black holes, neutron stars, and pulsars. [6] The observatory, which was launched on 9 December 2021, is an international collaboration between NASA and the Italian Space Agency (ASI). It is part of NASA's Explorers program, which designs low-cost spacecraft to study heliophysics and astrophysics.

Contents

The mission will study exotic astronomical objects and permit mapping of the magnetic fields of black holes, neutron stars, pulsars, supernova remnants, magnetars, quasars, and active galactic nuclei. The high-energy X-ray radiation from these objects' surrounding environment can be polarized  oscillating in a particular direction. Studying the polarization of X-rays reveals the physics of these objects and can provide insights into the high-temperature environments where they are created. [7]

Overview

Illustration of IXPE Ixpe 009.jpg
Illustration of IXPE

The IXPE mission was announced on 3 January 2017 [6] and was launched on 9 December 2021. [2] The international collaboration was signed in June 2017, [1] when the Italian Space Agency (ASI) committed to provide the X-ray polarization detectors. [7] The estimated cost of the mission and its two-year operation is US$188 million (the launch cost is US$50.3 million). [8] [7] The goal of the IXPE mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in astrophysics: "Discover how the universe works". [1] By obtaining X-ray polarimetry and polarimetric imaging of cosmic sources, IXPE addresses two specific science objectives: to determine the radiation processes and detailed properties of specific cosmic X-ray sources or categories of sources; and to explore general relativistic and quantum effects in extreme environments. [1] [6]

During IXPE's two-year mission, it will study targets such as active galactic nuclei, quasars, pulsars, pulsar wind nebulae, magnetars, accreting X-ray binaries, supernova remnants, and the Galactic Center. [4]

The spacecraft was built by Ball Aerospace & Technologies. [1] The principal investigator is Martin C. Weisskopf of NASA Marshall Space Flight Center; he is the chief scientist for X-ray astronomy at NASA's Marshall Space Flight Center and project scientist for the Chandra X-ray Observatory spacecraft. [7]

Other partners include the McGill University, Massachusetts Institute of Technology (MIT), Roma Tre University, Stanford University, [5] OHB Italia [9] and the University of Colorado Boulder. [10]

Objectives

The technical and science objectives include: [2]

Telescopes

The space observatory features three identical telescopes designed to measure the polarization of cosmic X-rays. [6] The polarization-sensitive detector was invented and developed by Italian scientists of the Istituto Nazionale di AstroFisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) and was refined over several years. [4] [11] [12]

Telescope (×3)Basic parameters
Wavelength X-ray
Energy range2–8 keV
Field of view (FoV)>11′
Angular resolution≤30″

Principle

IXPE's payload is a set of three identical imaging X-ray polarimetry systems mounted on a common optical bench and co-aligned with the pointing axis of the spacecraft. [1] Each system operates independently for redundancy and comprises a mirror module assembly that focuses X-rays onto a polarization-sensitive imaging detector developed in Italy. [1] The 4 m (13 ft) focal length is achieved using a deployable boom.

The Gas Pixel Detectors (GPD), [13] a type of Micropattern gaseous detector, rely on the anisotropy of the emission direction of photoelectrons produced by polarized photons to gauge with high sensitivity the polarization state of X-rays interacting in a gaseous medium. [4] Position-dependent and energy-dependent polarization maps of such synchrotron-emitting sources will reveal the magnetic-field structure of the X-ray emitting regions. X-ray polarimetric imaging better indicates the magnetic structure in regions of strong electron acceleration. The system is capable to resolve point sources from surrounding nebular emission or from adjacent point sources. [4]

Launch profile

IXPE launch IXPE Launch (NHQ202112090001).jpg
IXPE launch

IXPE was launched on 9 December 2021 on a SpaceX Falcon 9 (B1061.5) from LC-39A at NASA's Kennedy Space Center in Florida. The relatively small size and mass of the observatory falls well short of the normal capacity of SpaceX's Falcon 9 launch vehicle. However, Falcon 9 had to work to get IXPE into the correct orbit because IXPE is designed to operate in an almost exactly equatorial orbit with a 0° inclination. Launching from Cape Canaveral, which is located 28.5° above the equator, it was physically impossible to launch directly into a 0.2° equatorial orbit. Instead, the rocket needed to launch due east into a parking orbit and then perform a plane, or inclination, change once in space, as the spacecraft crossed the equator. For Falcon 9, this meant that even the tiny 330 kg (730 lb) IXPE likely still represented about 20–30% of its maximum theoretical performance (1,500–2,000 kg (3,300–4,400 lb)) for such a mission profile, while the same launch vehicle is otherwise able to launch about 15,000 kg (33,000 lb) to the same 540 km (340 mi) orbit IXPE was targeting when no plane change is needed, while recovering the first stage booster. [14]

IXPE is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as black holes and neutron stars. The orbit hugging the equator will minimize the X-ray instrument's exposure to radiation in the South Atlantic Anomaly, the region where the inner Van Allen radiation belt comes closest to Earth's surface.

Operations

IXPE is built to last for two years. [8] After that it may be retired and deorbited or given an extended mission.

After launch and deployment of the IXPE spacecraft, NASA pointed the spacecraft at 1ES 1959+650, a black hole, and SMC X-1, a pulsar, for calibration. After that the spacecraft observed its first science target, Cassiopeia A. A first-light image of Cassiopeia A was released on 11 January 2022. [15] 30 targets are planned to be observed during IXPE's first year. [15]

IXPE communicates with Earth via a ground station in Malindi, Kenya. The ground station is owned and operated by the Italian Space Agency. [15]

At present mission operations for IXPE are controlled by the Laboratory for Atmospheric and Space Physics (LASP). [16]

Results

In May 2022 the first study of IXPE hinted the possibility of vacuum birefringence on 4U 0142+61 [17] [18] and in August another study looked at Centaurus A measuring low polarization degree, suggesting that the X-ray emission is coming from a scattering process rather than arising directly from the accelerated particles of the jet. [19] [20] In October 2022 it observed the gamma ray burst GRB 221009A, also known as the "Brightest of all time" (BOAT). [21] [22]

See also

Related Research Articles

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">GALEX</span> NASA UV space telescope of the Explorer program, operated 2003-2013

Galaxy Evolution Explorer was a NASA orbiting space telescope designed to observe the universe in ultraviolet wavelengths to measure the history of star formation in the universe. In addition to paving the way for future ultraviolet missions, the space telescope allowed astronomers to uncover mysteries about the early universe and how it evolved, as well as better characterize phenomena like black holes and dark matter. The mission was extended three times over a period of 10 years before it was decommissioned in June 2013. GALEX was launched on 28 April 2003 and decommissioned in June 2013.

<span class="mw-page-title-main">Compton Gamma Ray Observatory</span> NASA space observatory designed to detect X-rays and gamma rays (1991–2000)

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with energies from 20 keV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000. It was deployed in low Earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 16,300 kilograms (35,900 lb).

<span class="mw-page-title-main">Great Observatories program</span> Series of NASA satellites

NASA's series of Great Observatories satellites are four large, powerful space-based astronomical telescopes launched between 1990 and 2003. They were built with different technology to examine specific wavelength/energy regions of the electromagnetic spectrum: gamma rays, X-rays, visible and ultraviolet light, and infrared light.

<span class="mw-page-title-main">Reuven Ramaty High Energy Solar Spectroscopic Imager</span> NASA satellite of the Explorer program

Reuven Ramaty High Energy Solar Spectroscopic Imager was a NASA solar flare observatory. It was the sixth mission in the Small Explorer program (SMEX), selected in October 1997 and launched on 5 February 2002, at 20:58:12 UTC. Its primary mission was to explore the physics of particle acceleration and energy release in solar flares.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">Explorer 11</span> NASA satellite of the Explorer program

Explorer 11 was a NASA satellite that carried the first space-borne gamma-ray telescope. This marked the beginning of space gamma-ray astronomy. Launched on 27 April 1961 by a Juno II, the satellite returned data until 17 November 1961, when power supply problems ended the science mission. During the spacecraft's seven-month lifespan it detected twenty-two events from gamma-rays and approximately 22,000 events from cosmic radiation.

<span class="mw-page-title-main">Einstein Observatory</span> X-ray telescope space observatory

Einstein Observatory (HEAO-2) was the first fully imaging X-ray telescope put into space and the second of NASA's three High Energy Astrophysical Observatories. Named HEAO B before launch, the observatory's name was changed to honor Albert Einstein upon its successfully attaining orbit.

<span class="mw-page-title-main">NuSTAR</span> NASA X-ray space telescope of the Explorer program

NuSTAR is a NASA space-based X-ray telescope that uses a conical approximation to a Wolter telescope to focus high energy X-rays from astrophysical sources, especially for nuclear spectroscopy, and operates in the range of 3 to 79 keV.

<span class="mw-page-title-main">4U 0142+61</span> Pulsar in the constellation Cassiopeia

4U 0142+61 is a magnetar at an approximate distance of 13000 light-years from Earth, located in the constellation Cassiopeia.

<i>AstroSat</i> Space observatory

AstroSat is India's first dedicated multi-wavelength space telescope. It was launched on a PSLV-XL on 28 September 2015. With the success of this satellite, ISRO has proposed launching AstroSat-2 as a successor for AstroSat.

<i>Hitomi</i> (satellite) Failed Japanese X-ray astronomy satellite

Hitomi, also known as ASTRO-H and New X-ray Telescope (NeXT), was an X-ray astronomy satellite commissioned by the Japan Aerospace Exploration Agency (JAXA) for studying extremely energetic processes in the Universe. The space observatory was designed to extend the research conducted by the Advanced Satellite for Cosmology and Astrophysics (ASCA) by investigating the hard X-ray band above 10 keV. The satellite was originally called New X-ray Telescope; at the time of launch it was called ASTRO-H. After it was placed in orbit and its solar panels deployed, it was renamed Hitomi. The spacecraft was launched on 17 February 2016 and contact was lost on 26 March 2016, due to multiple incidents with the attitude control system leading to an uncontrolled spin rate and breakup of structurally weak elements.

<span class="mw-page-title-main">Gamma-ray astronomy</span> Observational astronomy performed with gamma rays

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies at the very shortest wavelengths. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

<span class="mw-page-title-main">Gravity and Extreme Magnetism Small Explorer</span> NASA satellite of the Explorer program

Gravity and Extreme Magnetism Small Explorer mission was a NASA space observatory mission. The main scientific goal of GEMS was to be the first mission to systematically measure the polarization of X-ray sources. GEMS would have provided data to help scientists study the shape of spacetime that has been distorted by a spinning black hole's gravity and the structure and effects of the magnetic fields around neutron stars. It was cancelled by NASA in June 2012 for potential cost overruns due to delays in developing the technology and never moved into the development phase.

<span class="mw-page-title-main">International X-ray Observatory</span> Cancelled American-ESA-Japanese space telescope project

The International X-ray Observatory (IXO) is a cancelled X-ray telescope that was to be launched in 2021 as a joint effort by NASA, the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA). In May 2008, ESA and NASA established a coordination group involving all three agencies, with the intent of exploring a joint mission merging the ongoing XEUS and Constellation-X Observatory (Con-X) projects. This proposed the start of a joint study for IXO. NASA was forced to cancel the observatory due to budget constraints in fiscal year 2012. ESA however decided to reboot the mission on its own developing Advanced Telescope for High Energy Astrophysics as a part of Cosmic Vision program.

<span class="mw-page-title-main">Neutron Star Interior Composition Explorer</span> NASA telescope on International Space Station

The Neutron Star Interior Composition ExploreR (NICER) is a NASA telescope on the International Space Station, designed and dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear physics environments embodied by neutron stars, exploring the exotic states of matter where density and pressure are higher than in atomic nuclei. As part of NASA's Explorer program, NICER enabled rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena, and the mechanisms that underlie the most powerful cosmic particle accelerators known. NICER achieved these goals by deploying, following the launch, and activation of X-ray timing and spectroscopy instruments. NICER was selected by NASA to proceed to formulation phase in April 2013.

<span class="mw-page-title-main">Martin C. Weisskopf</span>

Dr. Martin C. Weisskopf until his retirement from NASA in at the end of May, 2022, was project scientist for NASA's Chandra X-ray Observatory and Chief Scientist for X-ray Astronomy in the Space Sciences Department at NASA's Marshall Space Flight Center in Huntsville, Alabama. He was also the Principal Investigator of the Small Explorer mission the Imaging X-ray Polarization Explorer (IXPE).

<span class="mw-page-title-main">XPoSat</span> Indian space observatory

The X-ray Polarimeter Satellite (XPoSat) is an Indian Space Research Organisation (ISRO) manufactured space observatory to study polarisation of cosmic X-rays. It was launched on 1 January 2024 on a PSLV rocket, and it has an expected operational lifespan of at least five years.

References

  1. 1 2 3 4 5 6 7 "IXPE (Imaging X-ray Polarimetry Explorer)". eoportal.com. ESA. Archived from the original on 30 April 2024. Retrieved 17 February 2019.
  2. 1 2 3 "IXPE Home: Expanding the X-ray View of the Universe". Marshall Space Flight Center (MSFC). NASA. 7 September 2021. Archived from the original on 2 October 2021. Retrieved 15 September 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. "IXPE X-ray observatory completes commissioning, eyes Cassiopeia A for calibration". NASASpaceFlight.com. 10 January 2022. Archived from the original on 11 January 2022. Retrieved 11 January 2022.
  4. 1 2 3 4 5 Weisskopf, Martin C.; Ramsey, Brian; o'Dell, Stephen L.; Tennant, Allyn; Elsner, Ronald; Soffitta, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; Muleri, Fabio; Marshall, Herman; Matt, Giorgio; Romani, Roger (31 October 2016). "The Imaging X-ray Polarimetry Explorer (IXPE)". Results in Physics. 6: 1179–1180. Bibcode:2016ResPh...6.1179W. doi: 10.1016/j.rinp.2016.10.021 . hdl: 2060/20160007987 .
  5. 1 2 "IXPE Fact Sheet" (PDF). NASA. 2017. Archived (PDF) from the original on 2 April 2019. Retrieved 2 February 2018.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  6. 1 2 3 4 "NASA Selects Mission to Study Black Holes, Cosmic X-ray Mysteries". NASA. 3 January 2017. Archived from the original on 8 December 2021. Retrieved 6 December 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. 1 2 3 4 "NASA selects X-ray astronomy mission". SpaceNews. 4 January 2017. Archived from the original on 30 April 2024. Retrieved 9 December 2021.
  8. 1 2 Clark, Stephen (8 July 2019). "SpaceX wins NASA contract to launch X-ray telescope on reused rocket". Spaceflight Now. Archived from the original on 2 January 2022. Retrieved 9 December 2021.
  9. "Advanced Observatory Design for the Imaging X-Ray Polarimeter Explorer (IXPE) Mission". Space Foundation. 2018. Archived from the original on 9 December 2021. Retrieved 10 December 2021.
  10. "Students operate $214M spacecraft. 'It's like what you see in the movies.'". CU Boulder Today. 18 January 2022. Archived from the original on 2 August 2022. Retrieved 2 August 2022.
  11. Costa, Enrico; Soffitta, Paolo; Bellazzini, Ronaldo; Brez, Alessandro; Lumb, Nicholas; Spandre, Gloria (2001). "An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars". Nature. 411 (6838): 662–665. arXiv: astro-ph/0107486 . Bibcode:2001Natur.411..662C. doi:10.1038/35079508. PMID   11395761. S2CID   4348577.
  12. Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Latronico, L.; Omodei, N.; Razzano, M.; Massai, M. M.; Pesce-Rollins, M.; Sgrò, C.; Costa, E.; Soffitta, P.; Sipila, H.; Lempinen, E. (2017). "A sealed Gas Pixel Detector for X-ray astronomy". Nuclear Instruments and Methods in Physics Research Section A. 592 (2): 853–858. arXiv: astro-ph/0611512 . Bibcode:2007NIMPA.579..853B. doi:10.1016/j.nima.2007.05.304. S2CID   119036804.
  13. Soffitta, Paolo; Costa, Enrico; di Persio, Giuseppe; Morelli, Ennio; Rubini, Alda; Bellazzini, Ronaldo; Brez, Alessandro; Raffo, Renzo; Spandre, Gloria; Joy, David (11 August 2001). "Astronomical X-ray polarimetry based on photoelectric effect with microgap detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 469 (2): 164–184. arXiv: astro-ph/0012183 . Bibcode:2001NIMPA.469..164S. doi:10.1016/S0168-9002(01)00772-0. Archived from the original on 17 June 2022. Retrieved 14 January 2024.
  14. "SpaceX Falcon 9 rocket rolls out to launch pad with NASA X-ray telescope". TESLARATI. 7 December 2021. Archived from the original on 3 January 2022. Retrieved 9 December 2021.
  15. 1 2 3 Mohon, Lee (11 January 2022). "NASA's New IXPE Mission Begins Science Operations". NASA. Archived from the original on 22 January 2022. Retrieved 20 January 2022.
  16. "Quick Facts: Imaging X-ray Polarimetry Explorer (IXPE)". LASP. Archived from the original on 28 May 2022. Retrieved 12 May 2022.
  17. Taverna, Roberto; Turolla, Roberto; Muleri, Fabio; Heyl, Jeremy; Zane, Silvia; Baldini, Luca; Caniulef, Denis González; Bachetti, Matteo; Rankin, John; Caiazzo, Ilaria; Di Lalla, Niccolò; Doroshenko, Victor; Errando, Manel; Gau, Ephraim; Kırmızıbayrak, Demet (18 May 2022). "Polarized x-rays from a magnetar". Science. 378 (6620): 646–650. arXiv: 2205.08898 . Bibcode:2022Sci...378..646T. doi:10.1126/science.add0080. PMID   36356124. S2CID   248863030.
  18. "X-ray polarisation probes extreme physics". CERN Courier. 30 June 2022. Archived from the original on 15 August 2022. Retrieved 15 August 2022.
  19. Ehlert, Steven R.; Ferrazzoli, Riccardo; Marinucci, Andrea; Marshall, Herman L.; Middei, Riccardo; Pacciani, Luigi; Perri, Matteo; Petrucci, Pierre-Olivier; Puccetti, Simonetta; Barnouin, Thibault; Bianchi, Stefano; Liodakis, Ioannis; Madejski, Grzegorz; Marin, Frédéric; Marscher, Alan P. (1 August 2022). "Limits on X-Ray Polarization at the Core of Centaurus A as Observed with the Imaging X-Ray Polarimetry Explorer". The Astrophysical Journal. 935 (2): 116. arXiv: 2207.06625 . Bibcode:2022ApJ...935..116E. doi: 10.3847/1538-4357/ac8056 . ISSN   0004-637X. S2CID   250526704.
  20. "Probing a Bright Radio Galaxy with X-Rays". AAS Nova. 26 August 2022. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  21. Negro, Michela; Di Lalla, Niccolò; Omodei, Nicola; Veres, Péter; Silvestri, Stefano; Manfreda, Alberto; Burns, Eric; Baldini, Luca; Costa, Enrico; Ehlert, Steven R.; Kennea, Jamie A.; Liodakis, Ioannis; Marshall, Herman L.; Mereghetti, Sandro; Middei, Riccardo (1 March 2023). "The IXPE View of GRB 221009A". The Astrophysical Journal Letters. 946 (1): L21. arXiv: 2301.01798 . Bibcode:2023ApJ...946L..21N. doi: 10.3847/2041-8213/acba17 . ISSN   2041-8205. S2CID   255440524.
  22. Hensley, Kerry (29 March 2023). "Focusing on the Brightest Gamma-ray Burst of All Time". AAS Nova. Archived from the original on 12 April 2023. Retrieved 12 April 2023.