SpaceX CRS-24

Last updated

SpaceX CRS-24
CRS-24 Cargo Dragon pictured docked to the Harmony module (ISS066-E-096808).jpg
CRS-24 mission docked to ISS
NamesSpX-24
Mission type ISS resupply
Operator SpaceX
COSPAR ID 2021-127A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 50318 OOjs UI icon edit-ltr-progressive.svg
Mission duration34 days, 10 hours, 57 minutes
Spacecraft properties
SpacecraftCargo Dragon  C209
Spacecraft type Cargo Dragon
ManufacturerSpaceX
Launch mass6,000 kg (13,000 lb)
Payload mass2,989 kg (6,590 lb)
Dimensions8.1 m (27 ft) (height)
4 m (13 ft) (diameter)
Start of mission
Launch date21 December 2021, 10:07:08 UTC [1]
Rocket Falcon 9 Block 5 (B1069.1)
Launch site Kennedy Space Center, LC-39A
End of mission
Recovered by MV GO Searcher
Landing date24 January 2022, 21:05 UTC [2]
Landing site Gulf of Mexico
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
Inclination 51.66°
Docking with International Space Station
Docking port Harmony zenith
Docking date22 December 2021, 08:41 UTC
Undocking date23 January 2022, 15:40 UTC
Time docked32 days, 6 hours, 59 minutes (achieved)
Cargo
Mass2,989 kg (6,590 lb)
Pressurised2,081 kg (4,588 lb)
Unpressurised908 kg (2,002 lb)
SpaceX CRS-24 Patch.png
SpaceX CRS-24 mission patch
NG-17  

SpaceX CRS-24, also known as SpX-24, was a Commercial Resupply Service mission to the International Space Station launched on 21 December 2021, at 10:07:08 UTC. [3] [4] The mission is contracted by NASA and is flown by SpaceX using a Cargo Dragon. This is the fourth flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016. [5]

Contents

Cargo Dragon

SpaceX plans to reuse the Cargo Dragons up to five times. The Cargo Dragon is launched without SuperDraco abort engines, without seats, cockpit controls and the life support system required to sustain astronauts in space. [6] [7] [8] The new Cargo Dragon capsules under the NASA CRS Phase 2 contract will land east of Florida in the Atlantic Ocean. [6] [8]

Payload

NASA contracted for the CRS-24 mission from SpaceX and therefore determines the primary payload, date of launch, and orbital parameters for the Cargo Dragon C209. [9] (This effectively determined C209'a turnaround time, which broke the shortness record for reusable orbital spacecraft, at 164.3 days.) [10] Two educational microcontrollers (Astro Pi [11] and Calliope mini [12] ) are also being delivered as part of the payload of this mission.

SpaceX CRS-24 carries over 2,989 kg (6,590 lb) of science experiments, instruments, supplies, hardware, and Christmas presents up to the ISS and the crew of Expedition 66. [5]

ANITA-2

ANITA-2 is a trace gas monitoring system developed by OHB and SINTEF under contract of ESA. [13]

STP-H7

A technology demonstration mission which consists of the following payloads: [14]

STP-H8

A technology demonstration mission which consists of the microwave radiometers COWVR and TEMPEST. [12]

Research experiments

The following research experiments will fly on SpaceX CRS-24: [5]


European Space Agency (ESA) research and activities:


Rodent Research-18 Astronauts can experience eye problems after returning from space, along with headaches and blurred vision. Rodent Research-18 investigates how spaceflight affects visual function, examining changes in the vascular system of the retina and the ways specific cells interact. A better understanding of the process and biological mechanisms behind these effects could support development of more effective countermeasures. This mission will specifically test metalloporphyrin, an antioxidant that may protect against the irreversible oxidative damage observed in eye structure and function during and after spaceflight. This investigation could also lead to new therapies for neurovascular-related eye diseases and retinal degeneration in people on Earth.

ISS hardware

The following ISS hardware is launched on SpaceX CRS-24: [5]

Launch:

Return:

CubeSats

Five CubeSats were planned for deployment on this mission and on 26 January 2022 the Japanese Remote Manipulator System RMS arm extracted Nanoracks NRCSD-22 from the Kibō airlock; NRCSD-22 then ejected five cubesats (ELaNa 38):

Return

One of the four parachutes' deployment lagged behind the others. The same issue was observed during SpaceX Crew-2. [18]

See also

Related Research Articles

<span class="mw-page-title-main">SpaceX CRS-4</span> 2014 American resupply spaceflight to the ISS

SpaceX CRS-4, also known as SpX-4, was a Commercial Resupply Service mission to the International Space Station (ISS), contracted to NASA, which was launched on 21 September 2014 and arrived at the space station on 23 September 2014. It was the sixth flight for SpaceX's uncrewed Dragon cargo spacecraft, and the fourth SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. The mission brought equipment and supplies to the space station, including the first 3D printer to be tested in space, a device to measure wind speed on Earth, and small satellites to be launched from the station. It also brought 20 mice for long-term research aboard the ISS.

<span class="mw-page-title-main">SpaceX CRS-9</span> 2016 American resupply spaceflight to the ISS

SpaceX CRS-9, also known as SpX-9, is a Commercial Resupply Service mission to the International Space Station which launched on 18 July 2016. The mission was contracted by NASA and is operated by SpaceX using a Dragon capsule.

<span class="mw-page-title-main">SpaceX CRS-10</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-10, also known as SpX-10, was a Dragon Commercial Resupply Service mission to the International Space Station (ISS) which launched on 19 February 2017. The mission was contracted by NASA as part of its Commercial Resupply Services program and was launched by SpaceX aboard the 30th flight of the Falcon 9 rocket. The mission ended on 19 March 2017 when the Dragon spacecraft left the ISS and safely returned to Earth.

<span class="mw-page-title-main">SpaceX CRS-12</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-12, also known as SpX-12, was a Commercial Resupply Services mission to the International Space Station launched on 14 August 2017. The mission was contracted by NASA and was flown by SpaceX using a new Dragon capsule. The Falcon 9 rocket's reusable first stage performed a controlled landing on Landing Zone 1 (LZ1) at Cape Canaveral Air Force Station. After delivering more than 2,900 kilograms (6,400 lb) of cargo, the Dragon spacecraft returned to Earth on 17 September 2017.

<span class="mw-page-title-main">SpaceX CRS-13</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-13, also known as SpX-13, was a Commercial Resupply Service mission to the International Space Station launched on 15 December 2017. The mission was contracted by NASA and is flown by SpaceX. It was the second mission to successfully reuse a Dragon capsule, previously flown on CRS-6. The first stage of the Falcon 9 Full Thrust rocket was the previously flown, "flight-proven" core from CRS-11. The first stage returned to land at Cape Canaveral's Landing Zone 1 after separation of the first and second stage.

<span class="mw-page-title-main">SpaceX CRS-14</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-14, also known as SpX-14, was a Commercial Resupply Service mission to the International Space Station launched on 2 April 2018. The mission was contracted by NASA and was flown by SpaceX. This mission reused the Falcon 9 first stage booster previously flown on CRS-12 and the Dragon capsule flown on CRS-8.

<span class="mw-page-title-main">SpaceX CRS-16</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-16, also known as SpX-16, was a Commercial Resupply Service mission to the International Space Station launched on 5 December 2018 aboard a Falcon 9 launch vehicle. The mission was contracted by NASA and is flown by SpaceX.

<span class="mw-page-title-main">SpaceX CRS-19</span> 2019 American resupply spaceflight to the ISS

SpaceX CRS-19, also known as SpX-19, was a Commercial Resupply Service mission to the International Space Station. The mission is contracted by NASA and was flown by SpaceX on a Falcon 9 rocket.

<span class="mw-page-title-main">Cygnus NG-13</span> 2020 American resupply spaceflight to the ISS

NG-13, previously known as OA-13, was the fourteenth flight of the Northrop Grumman robotic resupply spacecraft Cygnus and its thirteenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS-1) contract with NASA. The mission launched on 15 February 2020 at 20:21:01 UTC after nearly a week of delays. This is the second launch of Cygnus under the CRS-2 contract.

<span class="mw-page-title-main">SpaceX CRS-21</span> 2020 American resupply spaceflight to the ISS

SpaceX CRS-21, also known as SpX-21, was a Commercial Resupply Service mission to the International Space Station which launched on 6 December 2020. The mission was contracted by NASA and was flown by SpaceX using a Cargo Dragon 2. This was the first flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016. This was also the first Cargo Dragon of the new Dragon 2 variant, as well as the first Cargo Dragon flight that was docked at the same time as a Crew Dragon spacecraft. This mission used Booster B1058.4, becoming the first NASA mission to reuse a booster previously used on a non-NASA mission. This was also first time SpaceX launched a NASA payload on a booster with more than one previous flight.

<span class="mw-page-title-main">SpaceX CRS-22</span> 2021 American resupply spaceflight to the ISS

SpaceX CRS-22, also known as SpX-22, was a Commercial Resupply Services (CRS) mission to the International Space Station (ISS) that launched at 17:29:15 UTC on 3 June 2021. The mission is contracted by NASA and is flown by SpaceX using a Cargo Dragon 2. This is the second flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016.

<span class="mw-page-title-main">Cygnus NG-15</span> 2021 American resupply spaceflight to the ISS

Cygnus NG-15, previously known as OA-15, was the fifteenth launch of the Northrop Grumman robotic resupply spacecraft Cygnus and its fourteenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS) contract with NASA. The mission launched on 20 February 2021 at 17:36:50 UTC. This is the fourth launch of Cygnus under the CRS-2 contract.

<span class="mw-page-title-main">SpaceX CRS-23</span> 2021 American resupply spaceflight to the ISS

SpaceX CRS-23, also known as SpX-23, was a Commercial Resupply Service mission to the International Space Station, successfully launched on 29 August 2021 and docking the following day. The mission was contracted by NASA and was flown by SpaceX using the Cargo Dragon C208. This was the third flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016. It was the second mission for this reusable capsule.

<span class="mw-page-title-main">SpaceX CRS-25</span> 2022 American resupply spaceflight to the ISS

SpaceX CRS-25, also known as SpX-25, was a Commercial Resupply Service mission (CRS) to the International Space Station (ISS) that was launched on 15 July 2022. The mission was contracted by NASA and was flown by SpaceX using their reusable spacecraft, the Cargo Dragon. The vehicle delivered supplies to the crew aboard the ISS along with multiple pieces of equipment that will be used to conduct multiple research investigations aboard the ISS.

<span class="mw-page-title-main">Cygnus NG-19</span> Late 2023 cargo spacecraft mission to ISS

NG-19 was the nineteenth flight of the Northrop Grumman robotic resupply spacecraft Cygnus and its eighteenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS-2) contract with NASA. The mission launched on 2 August 2023 at 00:31:14 UTC. This was the eighth launch of Cygnus under the CRS-2 contract.

<span class="mw-page-title-main">SpaceX CRS-26</span> 2022 American resupply spaceflight to the ISS

SpaceX CRS-26, also known as SpX-26, was a Commercial Resupply Service mission to the International Space Station (ISS) launched on 26 November 2022. The mission was contracted by NASA and flown by SpaceX using a Cargo Dragon. This was the sixth flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016.

<span class="mw-page-title-main">SpaceX CRS-27</span> 2023 American resupply spaceflight to the ISS

SpaceX CRS-27, also known as SpX-27, was a Commercial Resupply Service mission to the International Space Station (ISS) launched on 15 March 2023. The mission was contracted by NASA and was flown by SpaceX using Cargo Dragon C209. This was the seventh flight for SpaceX under NASA's CRS Phase 2.

<span class="mw-page-title-main">SpaceX CRS-28</span> 2023 American resupply spaceflight to the ISS

SpaceX CRS-28, also known as SpX-28, is a Commercial Resupply Service mission to the International Space Station (ISS) launched on 5 June 2023. The mission was contracted by NASA and flown by SpaceX using Cargo Dragon ship C208. It was the eighth flight for SpaceX under NASA's CRS Phase 2.

<span class="mw-page-title-main">SpaceX CRS-29</span> 2023 American resupply spaceflight to the ISS

SpaceX CRS-29, also known as SpX-29, is a Commercial Resupply Service mission to the International Space Station (ISS) launched on 10 November 2023. The mission was contracted by NASA and flown by SpaceX using Cargo Dragon C211. It was the ninth flight for SpaceX under NASA's CRS Phase 2.

<span class="mw-page-title-main">SpaceX CRS-30</span> 2024 American resupply spaceflight to the ISS

SpaceX CRS-30, sometimes identified by NASA as SpX-30, was an American cargo spacecraft flight to the International Space Station (ISS), that launched on 21 March 2024. It was operated by SpaceX under a Commercial Resupply Services (CRS) contract with NASA. The spacecraft is a Cargo Dragon, serial number C209, which made its fourth flight on this mission. This mission was the first Cargo Dragon to launch from Cape Canaveral Space Launch Complex 40 since the second generation capsule was introduced on the SpaceX CRS-21 mission. In that time, a tower and access arm were added to the pad, allowing late loading of supplies into the spacecraft.

References

  1. "Live coverage: SpaceX hoping weather cooperates for predawn launch in Florida". Spaceflight Now. 20 December 2021. Retrieved 21 December 2021.
  2. Garcia, Mark (24 January 2022). "Cargo Dragon Splashes Down Ending SpaceX CRS-24 Mission". NASA. Retrieved 25 January 2022.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  3. "Microgravity Research Flights". Glenn Research Center. NASA. 22 April 2020. Retrieved 27 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  4. Clark, Stephen (31 March 2021). "Launch Schedule". Spaceflight Now. Retrieved 9 April 2021.
  5. 1 2 3 4 "SpaceX CRS-24 Mission Overview". NASA. 20 December 2021. Retrieved 21 December 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. 1 2 Audit of Commercial Resupply Services to the International Space Center (PDF). NASA Office of Inspector General (Report). Vol. IG-18-016. NASA. 26 April 2018. p. 24. Retrieved 29 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  7. "Dragon 2 modifications to Carry Cargo for CRS-2 missions". Teslarati. Retrieved 27 September 2020.
  8. 1 2 Clark, Stephen (2 August 2019). "SpaceX to begin flights under new cargo resupply contract next year". Spaceflight Now. Retrieved 29 September 2020.
  9. "SpaceX Commercial Resupply". ISS Program Office. NASA. 1 July 2019. Retrieved 27 September 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  10. Sesnic, Trevor (28 December 2021). "SpaceX continues to break reuse records and reach new milestones in 2021". NASASpaceFlight.com. Retrieved 5 December 2022.
  11. "We are sending Raspberry Pi computers to space for the European Astro Pi Challenge". 13 September 2021. Retrieved 21 December 2021.
  12. 1 2 "Small but Mighty NASA Weather Instruments Prepare for Launch". 3 November 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. Gisi, Michael; Pfeiffer, Lukas; Stettner, Armin; Seurig, Roland; Wahle, Markus; Honne, Atle; Kaspersen, Kristin; Bakke, Kari; Thielemann, Jens; Liverud, Anders Erik; Witt, Johannes; Rebeyre, Pierre; Hovland, Scott; Laurini, Daniele; Stuffler, Timo (12 July 2021). ANITA2 Trace Gas Analyser for the ISS - Flight Model Finalisation, Ground Test Results, and ANITA-X for future exploration missions. 50th International Conference on Environmental Systems. Lisbon, Portugal. Archived from the original on 12 April 2022.
  14. Krebs, Gunter D. “STP-H7”. Gunter's Space Page. Retrieved March 03, 2022, from https://space.skyrocket.de/doc_sdat/stp-h7.htm
  15. "ESA Television - Videos - 2020 - 12 - Thomas Pesquet Alpha mission training - Cytoskeleton for Alpha with Thomas Pesquet".
  16. "Get Away Special Passive Attitude Control Satellite". usu.edu. Retrieved 30 September 2021.
  17. "The Tethering and Ranging mission of the Georgia Institute of Technology (TARGIT)". ssdl.gatech.edu. Georgia Tech Space Systems Design Lab | Georgia Institute of Technology. Archived from the original on 15 November 2021. Retrieved 15 November 2021.
  18. Foust, Jeff (2 February 2022). "NASA and SpaceX investigating delayed Dragon parachute opening". SpaceNews. Retrieved 2 February 2022.